中山大学的一名叫mathAI的硕士学霸小哥在GitHub上开源了一个拍照做题神器火了。
Claude 3 推出之后,风头正劲。其中的「超大杯」Opus 号称可以在各项指标上碾压 GPT-4。这不,最近有一篇关于 Claude 3 在各个科学领域应用的文章我的朋友圈里刷屏了。文章提到了 Claude 3 在材料学、物理学和数学等领域研究的应用,让人感到非常振奋。仿佛有了这款新的大语言模型,科研工作都可以交给它来完成。这篇文章引起了广泛关注,但也有不少人持怀疑态度。由于我对材料学了解不多,我也把文章分享到朋友圈,想听听大家的意见。
前几天有一则新闻,说的是谷歌的DeepMind开发的人工智能,无法通过英国高中的数学考试。
争取每天更新 ? 126 蜗牛的历程: [入门问题] [机器学习] [聊天机器人] [好玩儿的人工智能应用实例] [TensorFlow] [深度学习] [强化学习] [神经网络
考虑从事数据科学职业?好消息:美国劳工统计局估计,数据科学家的就业率将 增长 36% 2021 年至 2031 年期间,预计届时将创造 40,500 个以上的就业岗位。随着全球产生的数据量快速增长,对数据科学专业人员的需求也在增长,他们可以帮助组织分析所有这些数据、改善内部运营并增加收入。
https://github.com/trekhleb/homemade-machine-learning
在这个信息爆炸的时代,我们每天都被各种数据和文档所包围,特别是教学科研工作者,面对成堆的公式时,常常感觉无从下手。
LaTeX 是一种标记语言(或者,如 官方网站 所述,“用于高质量排版的文档准备系统”) 用于创建精彩的论文和演示文稿。你在职业生涯中阅读的几乎所有论文都是使用 LaTeX 编写的。那么,让我们看看它是如何工作的!
(1)在介绍Python之前,先和大家聊一聊什么是编程语言。大家或许都知道,要让计算机为我们干活,就需要给计算机下指令,那么编程语言就是用来编写指令让计算机干活的一种语言。 (2)不妨举一个做菜的例子吧,假设现在我们需要厨师给我们做一道西红柿炒鸡蛋的菜,在这里厨师就相当于计算机,而菜谱就相当于给计算机的下的指令,计算机会根据我们所下达的指令来完成某一项任务便相当于厨师根据菜谱做出西红柿炒鸡蛋这道菜。 (3)人们通过编程语言给计算机下达指令,计算机便会一一相应执行指令,编程语言可以理解为人与计算机之间沟通交流的一种语言。
本文介绍了逻辑回归算法在网络安全领域的应用,包括异常流量识别、网站异常URL识别等,并探讨了如何使用逻辑回归算法解决这些场景中的问题。
在接下来的几篇博文中,作者将带领大家训练一个「计算机视觉+深度学习」的模型来执行人脸识别任务。但是,要想训练出能够识别图像或视频流中人脸的模型,我们首先得收集人脸图像的数据集。
朱小虎 Freeman Zhang 等翻译 前言 《神经网络和深度学习》是一本免费的在线书。本书会教会你: • 神经网络,一种美妙的受生物学启发的编程范式,可以让计算机从观测数据中进行学习 • 深度
这就是我们出的新方法:批量核范数最大化(Batch Nuclear-norm Maximization)。
昨日,在旷视科技联合北京智源人工智能研究院举办的发布会上,旷视研究院发布了物体检测数据集 Objects365,包含 63 万张图像数量,365 个类别数量,高达 1000 万的框数。旷视首席科学家兼研究院院长孙剑在活动上表示,该数据集也是新一代通用物体检测数据集,具有规模大、质量高、泛化能力强的特点。
如何有效处理大规模用户数据进行广告推荐?对于互联网企业的发展和进步至关重要。这也是为何快手成立西雅图实验室并实现新一代GPU广告模型训练平台的原因之一。快手新创建的“Persia”GPU广告模型训练平台比起传统CPU训练平台,单机训练速度提升可达几百倍,在约一小时内即可训练百T级别数据量,并能通过设计算法得到相对于传统训练平台精度更高的模型,对企业收入、计算资源的节约和新模型开发效率产生直观的提升。
在我们进行自动化测试的过程中,免不了要在登录时遇到验证码,很多时候我们都是只能找开发要万能验证码或者暂时关闭验证码这个功能,但是有时候我们必须要验证码是否能够正常生成,所以在这个时候,我们需要做的就是输入验证码,但是验证码这个东西是随机生成的,不是每一次都一样,所以我们还是需要识别然后输入,脚本是没有眼睛的,只能通过代码来进行识别,所以本文就来给大家介绍一下如何使用Python来轻松识别数字验证码。
杨净 发自 凹非寺 量子位 | 公众号 QbitAI AI学数学,确实有点火。 且不论这两大领域的大拿纷纷为其站台,就是每次相关进展一出炉,就受到众多关注,比如AI求解偏微分方程。 △每年相关论文估计数量 既然如此,AI学数学到底学得怎么样了。 现在有团队专门梳理了十年发展历程,回顾了关键任务、数据集、以及数学推理与深度学习交叉领域的方法,评估现有的基准和方法,并讨论该领域未来的研究方向。 值得一提的是,他们还很贴心的整理了相关资源,在Github上放上了阅读清单以供食用。 接下来,就带你一文看尽。 一文
在接下来的几篇文章中,我们将训练计算机视觉+深度学习模型来进行面部识别。在此之前,我们首先需要收集脸部数据集。
欲研究C#端如何进行图像的基本OCR识别,找到一款开源的OCR识别组件。该组件当前已经已经升级到了4.0版本。和传统的版本(3.x)比,4.0时代最突出的变化就是基于LSTM神经网络。Tesseract本身是由C++进行编写,但为了同时适配不同的语言进行调用,开放调用API并产生了诸如Java、C#、Python等主流语言在内的封装版本。本次主要研究C#封装版。
目前国内有很多优秀的中文手写识别数据集。例如:北京邮电大学模式识别实验室发布的数据(HCL2000),它是目前最大的脱机手写汉字库,共有1,000个人书写,除了汉字样本库外,还有一个对应的书写者信息库,记录了书写者的年龄、职业、文化程度等信息,用于研究相关影响因素。目前此数据库免费向研究者公开。本文使用的是中科院自动研究所的分享的中文手写数据集CASIA-HWDB(下载地址http://www.nlpr.ia.ac.cn/databases/handwriting/Home.html ),由187个人通过Wacom笔在线输入的手写汉字。
先说下关于我们的标定的事情,可能有的代码的注释是英文的: 对照在此 1、打印一张棋盘格,把它贴在一个平面上,作为标定物。 2、通过调整标定物或摄像机的方向,为标定物拍摄一些不同方向的照片。 3、从照片中提取棋盘格角点。 4、估算理想无畸变的情况下,五个内参和六个外参。 5、应用最小二乘法估算实际存在径向畸变下的畸变系数。 6、极大似然法,优化估计,提升估计精度。 计算参数的步骤。 https://www.smarttof.com/zh-hans/join 找到一个国内做深度相机的公司,感觉都快倒闭了都
人工智能…好吧,目前看来,这项尖端技术现在是最流行的,同时也是一项会对人类产生决定性影响的技术。我们对人工智能的力量和它们在几乎任何行业中的有效使用方式感到惊讶。现在的机器人就像 100 年前的飞机。那么接下来会是什么?这个问题引发了许多情绪,从极大的兴趣、鼓励、成为这一过程的组成部分的渴望,到最后的恐惧、困惑和无知。是什么阻止了你参与人工智能的发展,成为了一个被动的旁观者?
机器学习是一种人工智能(AI)的分支,它探索如何让计算机系统通过数据学习,从而改善其性能。简单来说,机器学习算法使计算机能够根据过去的经验(数据)自动进行学习,以便在未来做出准确的预测或决策。
从数学理论的角度来理解并提升机器学习方法,这也是近来非常有潜力的研究方向。不论是以前通过常微分方程或偏微分方程形式化神经网络,还是这一篇从拓扑学的角度强化神经网络的鲁棒性,也许当更多的数学基础被赋予机器学习时,它的发展与创新就会变得更加有「规律」。
在机器学习任务中,特征工程是至关重要的一步。对于分类特征的处理尤为重要,而CatBoost是一种能够自动处理分类特征的梯度提升决策树算法。本教程将详细介绍如何在Python中使用CatBoost进行自动分类特征处理,并提供相应的代码示例。
本文介绍了自然语言处理中的文本相似度计算方法和应用场景,并详细阐述了基于LSH(Locality-Sensitive Hashing)方法、基于树的方法(如随机森林、梯度提升树等)和基于图的方法(如k-Nearest Neighbors,k-NN)等应用场景。同时,文章还对未来的研究方向进行了展望,包括模型性能的评价、适用领域的拓展、计算效率的提升等。
特征工程本质是一项工程活动,它目的是最大限度地从原始数据中提取并加工特征以供模型或者算法使用。在传统机器学习领域流传着这样一句话: “数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”,从而可见特征工程的重要性。其实对于结构化数据建模,即使用深度学习模型,特征工程也是比模型本身要重要的。
VMware CEO Pat Gelsinger曾说: 数据科学是未来,大数据分析则是打开未来之门的钥匙 企业正在迅速用新技术武装自己以便从大数据项目中获益。各行业对大数据分析人才的需求也迫使我们升级自己的技能以便寻找更好的职业发展。 跳槽之前最好先搞清楚一个岗位会接触到的项目类型,这样你才能掌握所有需要的技能,工作的效率也会更高。 下面我们尽量列出了一些流行的开源大数据项目。根据它们各自的授权协议,你或许可以在个人或者商业项目中使用这些项目的源代码。写作本文的目的也就是为大家介绍一些解决大数据相关问题
datasets文件夹包含的是tflearn预先准备的几个数据集加载文件。可以方便测试,具体如下
VMware CEO Pat Gelsinger曾说: 引用 数据科学是未来,大数据分析则是打开未来之门的钥匙 企业正在迅速用新技术武装自己以便从大数据项目中获益。各行业对大数据分析人才的需求也迫使我们升级自己的技能以便寻找更好的职业发展。 跳槽之前最好先搞清楚一个岗位会接触到的项目类型,这样你才能掌握所有需要的技能,工作的效率也会更高。 下面我们尽量列出了一些流行的开源大数据项目。根据它们各自的授权协议,你或许可以在个人或者商业项目中使用这些项目的源代码。写作本文的目的也就是为大家介绍一些解决大数
命名实体识别(Named Entity Recognition,简称NER) , 是指识别文本中具有特定意义的词(实体),主要包括人名、地名、机构名、专有名词等等,并把我们需要识别的词在文本序列中标注出来。
有小伙伴问我可以如何在 WPF 使用其他第三方提供的库进行手写识别,上次 MyScript 的工程师和我吹,他做了世界上识别最好的库,本文就来安利一下大家这个库。这里库是收费的库,但是可以免费使用,只要不是有大量用户,这个库还是免费用的。用这个库可以在 Windows 平台识别数字、多个不同语言、数学公式手写识别
视频处理与动作识别是计算机视觉中的重要任务,广泛应用于监控系统、智能家居、体育分析等领域。通过使用Python和深度学习技术,我们可以构建一个简单的动作识别系统。本文将介绍如何使用Python实现视频处理与动作识别,并提供详细的代码示例。
一个数末尾的0是由2和5乘出来的,而1到2000里2多得是,主要看1到2000中有多少个5或5的n次方的倍数。 (1)统计5的倍数 2000/5=400,比如5、10、15、20、25等等。这些数,要么直接含了0,要么与2的倍数相乘会得到0,所以共有400个0。 (2)统计25的倍数 2000/25=80,比如25、50、75等等,这些数与4或4的倍数相乘,会得到两个0,但因为上一步中经加过一次0了,所以这里只能加80个0,而不是80 * 2 = 160个0。 (3)统计125的倍数: 2000/125=16,比如125、250、375等等,这些数与8或8的倍数相乘,会得到3个0。但是因为前两步算过两次了,这里只能再加一次。所以会增加16个0,而不是16 * 3 = 48个0。 (4)统计625的倍数 2000/625=3。这三个数分别数是625,1250和1875。这些数与16或16的倍数相乘,会得到4个0。但是前面已经计算过3次了,所以只会增加3个0,而不是3 * 4 = 12个 0。 (5)最后结果:400+80+16+3 = 499
2020 年 12 月 17 日,回形针工作室上新了一款新产品——「一个人工智能的诞生」互动教学视频[2],因为从高中开始就接触了 MOOC,对在线教育这块儿一直很感兴趣,所以第一时间就跟进体验了了一下他们的体验课——「识别数字」[3]。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 前言 在主成分分析(PCA)原理总结(机器学习(27)【降维】之主成分分析(PCA)详解)中对降维算法PCA做了总结。这里就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理。在学习LDA之前,有必要
数学能力是大语言模型推理水平的重要体现。上海人工智能实验室在推出领先的开源数学模型 InternLM2-Math 的三个月之后对其进行了升级,发布了全新的 InternLM2-Math-Plus。升级后的 InternLM2-Math-Plus 在预训练和微调数据方面进行了全面的优化,显著提高了其在自然语言推理、代码解题以及形式化数学语言上的性能。模型包括了 1.8B、7B、20B、8x22B 四种不同尺寸的版本,其中 1.8B、7B、20B 版本基于 InternLM2 基座,而 8x22B 版本则基于 Mixtral-8x22B 基座。
首先,所有的方法都有类似的过积,即都使用了分好类的训练数据集(人脸数据库,每 个人都有很多样本)来进行“训练”,对图像或视频中检测到的人脸进行分析,并从两方面来确定:是否识别到目标,目标真正被识别到的置信度的度量,这也称为置信度评分。
本文是关于使用 Rust 和 WASM 进行数字识别的两部分系列的第一部分,在这部分中,我们将从头开始实现一个识别数字的 WebApp:
大家好,我是朱小五。之前网上一直有句话:除了生孩子python可以说什么都会。虽说有些夸张,不过Python确实应用面非常广,爬虫、数据分析、机器学习、可视化、web网站开发等等。
【引子】本文源自和一个产品经理的对话。由于老码农经历过产研一体的磨砺, 鉴于个人对数据型产品感知,觉得一些数据科学的基础技能对产品经理或者普通的研发工程师都会有些帮助,遂成此文。
本文介绍了如何将图像转换为MNIST数据格式,并利用深度学习模型进行数字识别。首先介绍了MNIST数据格式的结构,然后通过Python代码实现了图像到MNIST数据的转换。最后,介绍了两种方法来实现模型对自己手写数字的识别,并指出了第二种方法的实时性更强。
导语: 对学习算法进行分类是基于构建模型时所需的数据:数据是否需要包括输入和输出或仅仅是输入,需要多少个数据点以及何时收集数据。根据上述分类原则,可以分为4个主要的类别:监督学习、无监督学习、半监督学习和强化学习。另外,小编Tom邀请你一起搞事情! 算法、模型和数据 从概念层面上来讲,我们正在构建一个机器,给这个机器一组输入数据,然后通过找到数据中的模式并从中学习,能够产生某种预期的输出。 一种非常常见的情况就是让机器在一组输入数据中查找,然后产生相对应的输出数据。机器在输入数据中识别出模式,并创建一组复杂
AiTechYun 编辑:yuxiangyu 每过一段时间,总会有一个python库被开发出来,改变深度学习领域。而PyTorch就是这样一个库。 在过去的几周里,我一直在尝试使用PyTorch。我发
【新智元导读】彭军(James Peng)和楼天成(楼教主)的Pony.ai 迎来了公司成立以来最重量级的大咖的加入——图灵奖得主、中科院院士姚期智先生出任Pony.ai首席顾问。未来,Pony.ai将来会配合姚先生在清华交叉信息研究院开展自动驾驶课程,还会面向全世界建立智能驾驶图像识别数据库,打造下一个ImageNet。 9月里北京的阳光并不比加州逊色多少,清华园里色调温暖而明快。树荫下斑驳的阳光半梦半醒地摇曳着,像是在迎接远道而来的客人。刚刚从加州硅谷飞回北京的Pony.ai的高管团队刚下飞机便赶来赴约
近期,旷视科技南京研究院发布学术界内目前最大的商品识别数据集——RPC,其图像数量和类别数量皆是该领域之最。同时,该数据集针对新零售场景定义了一个新问题,即视觉自动收银(automatic check-out, ACO),模拟零售真实结算场景。此外,还针对 ACO 任务给出了一套完整的 Baseline Method,以及“整单准确率”cAcc为代表的一系列评测指标,更有可以直接安装的 Python 版本评测工具。同名 GitHub 项目主页上有 Leaderboard,欢迎大家来刷榜!
在当今数据驱动的时代,大数据处理技术如Apache Spark已经成为企业数据湖和数据分析的核心组件。然而,在处理海量数据时,数据倾斜问题成为了一个难以忽视的挑战,它不仅会显著降低数据处理效率,甚至可能导致任务失败。本文将深入探讨数据倾斜的概念、产生原因、识别方法,并通过一个现实案例分析,介绍如何在Apache Spark中有效解决数据倾斜问题,辅以代码示例,帮助读者在实践中应对这一挑战。
最近在搜寻资料时,发现了一则10年前的新闻:二维码将成线上线下关键入口。从今天的移动互联网来看,支付收款码/健康码等等与我们息息相关,二维码确实成为了我们生活中不可或缺的一部分。
领取专属 10元无门槛券
手把手带您无忧上云