指定使用Windows系统中的黑体字体 ,字体路径为:'C:\\Windows\\Fonts\\simsun.ttc'
wordcloud是python的一个第三方库,称为词云也叫做文字云,是根据文本中的词频,对内容进行可视化的汇总,可以用来绘制用户画像。
词云图现在似乎成了各个互联网产品年终盘点的标准形式,比如我们的热搜,我们QQ音乐网易云音乐最喜欢的歌手最喜欢的歌曲等等,词云图实在是太契合互联网时代了。那么我们能不能自己也去画一个词云图出来?就用我们的Python来完成这个目标。
导读:在上一章节介绍在Python环境下调用HanLP包进行分词的基础上,本文将介绍如何使用wordcloud绘制词云。尽管目前市面上已经有很多成熟的在线交互词云工具,但是考虑到实际工作中有很多内容是具有保密性的,无法直接在互联网上公开。因此,如何在本地搭建词云平台,自定义地绘制词云显得格外重要。
在github上找轮子得时候,发现了这么一个项目:Kumo(项目地址:https://github.com/kennycason/kumo),
项目背景虽然现在已经有很多现成的制作词云图的工具了,但一般存在以下几个问题:问题一:工具太多,眼花缭乱,质量参差不齐,选择困难症; 问题二:大多词云工具或多或少有一些限制,自定义的空间有限;问题三:有些工具甚至收费。基于以上几个问题,迪迪觉得有必要写一篇Python绘制词云图的文章,因为实在太简单!没有任何编程基础的小白都能搞定的事,还找什么工具啊!
一年一度的虐狗节终于过去了,朋友圈各种晒,晒自拍,晒娃,晒美食,秀恩爱的。程序员在晒什么,程序员在加班。但是礼物还是少不了的,送什么好?作为程序员,我准备了一份特别的礼物,用以往发的微博数据打造一颗“
词云图,也叫文字云,是对文本中出现频率较高的“关键词”予以视觉化的展现,词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨。
《灵笼》艺画开天生产,B站独播,国漫里面制作算是精良,但是剧情有太多瑕疵。评论两极分化,好的说非常好,差的说非常差。看看弹幕说的啥吧
大家好,不知道大家会在什么场合使用词云图,对我来说词云图的优点除了它可以展示大量文本数据。从而让读者快速抓住重点,更重要的是词云图好看啊
前几天在Python铂金交流群【Jethro Shen】问了一个Python处理词云的问题,提问截图如下:
这个是当下最流行最时髦的AI神器chatGPT和我一起合作写的一篇通用技术文章,请读者笑纳!
在上一篇介绍了如何通过Python爬虫抓取豆瓣电影榜单。Python3.6+Beautiful Soup+csv 爬取豆瓣电影Top250 此篇博客主要抓取豆瓣某个电影的影评,利用jieba分词和w
前几天小编在家当主厨,从买菜到端上桌的全部流程都有小编操办,想着就弄一些简单一些的菜,就没有多想,可当小编去到超市站在一堆菜的面前却不知所措了,看着花花绿绿,五颜六色的菜不知道买什么,做什么菜。于是小编突发奇想,自己丰衣足食,弄一个菜谱生成器,随机生成 “三菜一汤”,完美解决买菜难的问题~
在数据可视化方面,词云一直是一种视觉冲击力很强的方式。对输入的一段文字进行语义分割,得到不同频度的词汇,然后以正比于词频的字体大小无规则的集中显示高频词,简洁直观高效。
本周为大家带来炫酷好玩的 wordcloud 词云构造库。 使用 wordcloud 可以做出这样的图片: 还可以做出这样的: 接下来,我们来学习如何制作属于自己的词云图。 本来想说一句,安装过程不表
前几天在Python私教群【Emma】问了一个Python读取数据的问题,一起来看看吧。上一篇文章讲到【Emma】的Python环境已经安装好了,现在要开始进阶学习了,一起来看看吧。
wordcloud是优秀的词云展示的第三方库,我们可以借助wordcloud轻松实现词云图。使用Wordcloud之前需要先了解它的以下几个特点:
豆瓣从2017.10月开始全面禁止爬取数据,仅仅开放500条数据,白天1分钟最多可以爬取40次,晚上一分钟可爬取60次数,超过此次数则会封禁IP地址。
关于词云的分析,一直想分析同一类文章的特征,不同类文章的特征,因此下载了射雕英雄传,神雕侠侣,倚天屠龙记这三部小说的前十章,又想着关于tf-idf的可视化分析问题,后来写着写着想着想着偏离主题了,变成射雕英雄传前十章人物的动态分析,再后来转变成随剧情的发展,人物是怎么出现的?剧情的高潮在哪里?
案例:其中TFIDF可参见之前的博客 http://blog.csdn.net/hhtnan/article/details/76586693 下图为背景图片
python中使用wordcloud包生成的词云图。 下面来介绍一下wordcloud包的基本用法。 class wordcloud.WordCloud(font_path=None, width=400, height=200, margin=2, ranks_only=None, prefer_horizontal=0.9,mask=None, scale=1, color_func=None, max_words=200, min_font_size=4, stopwords=None, random
周杰伦难得出新歌 ,最近终于推出了单曲《说好不哭》,然后直接把QQ音乐服务器干崩了,天王的实力可见一斑,QQ音乐还把这个当作 今天过年
上一篇文章(链接)我们对COVID19_line_list数据集进行了清洗以及初步分析。本文中我们将分析如何用词云来展示文本信息的概要。
看了很多网站,只发现获取拉勾网招聘信息是只用post方式就可以得到,应当是非常简单了。推荐刚接触数据分析和爬虫的朋友试一下。
然后在拉勾网搜索关键词 算法工程师 回车,然后点击下一页、下一页,此时开发者工具里的Network 下XHR(表示该网站是以Ajax方式获取刷新信息的)应当如下图(图中已标明了一些关键信息):
首先,通过b站网址,查看到《请回答1988》木鱼水心弹幕最多的一集,其URL如下:
👆点击“博文视点Broadview”,获取更多书讯 本案例中的歌词数据来自中文歌词数据库。 这个数据库提供了华语歌手的歌曲及歌词信息,数据以 JSON 格式存储。 为了尽量完整地呈现从原始数据到可视化的过程,接下来我们会先简单讲解数据的预处理过程,即如何将 JSON 数据转化为Excel 格式,以及如何对周杰伦的歌曲进行分词。 若你希望跳过数据预处理的过程,也可以在《数据可视化设计指南:从数据到新知》一书的下载文件中,直接使用分好词的 Excel 文件进行可视化练习。 数据预处理指的是将原始数据处理成
小爬怡情,中爬伤身,强爬灰灰。爬虫有风险,使用请谨慎,可能是这两天爬豆瓣电影爬多了,今天早上登录的时候提示号被封了(我用自己帐号爬的,是找死呢还是在找死呢 ...),好在后面发完短信后又解封了,^_^。 之前的文章中,已把电影短评数据装进了Mongo中,今天把数据取出来简单分析一下,当下最火的做法是进行词频统计并生成词云,今天说的就是这个。 读取Mongo中的短评数据,进行中文分词 不知道什么原因,我实际爬下来的短评数据只有1000条(不多不少,刚刚好),我总觉得有什么不对,但我重复爬了几次后,确实只有这
词云图是文本挖掘中用来表征词频的数据可视化图像,通过它可以很直观地展现文本数据中地高频词:
最近已经播完第一季的电视剧《雪中悍刀行》,从播放量就可以看出观众对于这部剧的期待,总播放量达到50亿,可让人遗憾的是,豆瓣评分只有5.7,甚至都没有破6。
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。
初学Python的时候,就写过一篇利用Python的第三方库进行好友头像拼接,itchat itchat库初探--微信好友全头像的拼接,最近又研究了下itchat和matplotlib,目前实现了对微信好友头像、性别、区域、个性签名的采集及展示。
Python 第三方库依照安装方式灵活性和难易程度有 3 个方法,这 3 个方法是:pip 工具安装、自定义安装、文件安装。
本篇文章先介绍几种制作词云的 Python 库,分别是 WordCloud、StyleCloud、Pyecharts;再加一个在线词云制作网站;最后通过代码实操和可视化效果对它们做个简单比较
今天我们要做的事情是使用动态爬虫来爬取QQ空间的说说,并把这些内容存在txt中,然后读取出来生成云图,这样可以清晰的看出朋友的状况。
首先放一张我的iPhone手机导出微信聊天记录生成的词云效果图(个别敏感词汇请大家自行忽略hhh):
“词云”就是对网络文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层”或“关键词渲染”,从而过滤掉大量的文本信息,使浏览网页者只要一眼扫过文本就可以领略文本的主旨。
说在前面: 次条推荐的是JS逆向加密连载文章,正在学习的朋友记得围观, 点击阅读原文有京东99元选10套书的优惠活动,送给有需要的朋友.
链接起散落的文章,给《玉树芝兰》数据科学系列教程做个导读,帮你更为高效入门数据科学。
每隔一段时间(一周到一个月)拿出1到2天来做一个好玩的东西,不求回报,只为快感。 前两天刚买了一本电子书《海子的诗》,晚上读了快一半,好多诗里面都提及了麦子和村庄。想到可以对海子的所有的诗来个词频分析,顺便做一个词云图片。
B站(哔哩哔哩)是国内知名的视频弹幕网站,也是中国最大的年轻人聚集地之一,想要知道B站弹幕爱刷什么梗?不同分区UP主弹幕各有什么特点?如何快速成为B站弹幕老司机?本文就通过Python爬取B站不同UP主近20万+弹幕数据进行分析,全文共分为两个部分,第一部分为不同分区up主的弹幕分析,第二部分为Python爬取B站弹幕技术分析。
昨天偷偷爬取了我们喜欢的 女孩的 QQ 空间说说,千万要把内容保存好了,不要泄露出去了,否则死无葬身之地啊,会被打死的,会被当作无耻之徒的,我都感觉自己罪恶感蹭蹭往上涨了,不过为了喜欢的人,无耻一回也罢
此网址内含大量python第三方库下载安装即可: 链接: https://www.lfd.uci.edu/~gohlke/pythonlibs/#pandas.
说明:本文是我数据科学系列教程的导读。因为微信公众号文章一经发布,便不能大篇幅编辑内容,后续发布的新教程无法加入进来。所以我只得选择不定期更新发布本文的最新版,以便你能更方便地找到自己需要的知识组块。
作者:纯臻 来源: http://blog.csdn.net/marksinoberg/article/details/70809830 互联网爬虫是一个很有意思的技术,借由爬虫,我们可以做到很多好玩的事情——这其中就包括爬取评论。 词云就是个更好玩的技术,通过技术方法分析词语出现频率,生成可视化的图形,将文字内容用图形呈现,想想就很意思。 这次,我们就试着把这两个技术结合起来吧。 前言 网易云音乐一直是我向往的“神坛“,听音乐看到走心的评论的那一刻,高山流水。于是今天来抓取一下歌曲的热门评论。
自从2023.3月以来,"淄博烧烤"现象持续占领热搜流量,体现了后疫情时代众多网友对人间烟火气的美好向往,本现象级事件存在一定的数据分析实践意义。
领取专属 10元无门槛券
手把手带您无忧上云