本章介绍如何使用Pytorch实现简单的声纹识别模型,本项目参考了人脸识别项目的做法Pytorch-MobileFaceNet ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。
本章介绍如何使用PaddlePaddle实现简单的声纹识别模型,本项目参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。
音频信号是模拟信号,我们需要将其保存为数字信号,才能对语音进行算法操作,WAV是Microsoft开发的一种声音文件格式,通常被用来保存未压缩的声音数据。
本章介绍如何使用Tensorflow实现简单的声纹识别模型,首先你需要熟悉音频分类,没有了解的可以查看这篇文章《基于Tensorflow实现声音分类》 。基于这个知识基础之上,我们训练一个声纹识别模型,通过这个模型我们可以识别说话的人是谁,可以应用在一些需要音频验证的项目。不同的是本项目使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。
本项目说是使用Keras,但使用的都是Tensorflow下的keras接口,本项目主要是用于声纹识别,也有人称为说话人识别。本项目包括了自定义数据集的训练,声纹对比,和声纹识别。
语音识别与处理是一项重要的人工智能技术,它可以将人类语音转换成文本形式,从而实现语音命令识别、语音转写等功能。在本文中,我们将介绍语音识别与处理的基本原理和常见的实现方法,并使用Python来实现这些模型。
pyaudio是语音处理的python库,提供了比较丰富的功能。 具体功能如下: 特征提取(feature extraction):关于时域信号和频域信号都有所涉及 分类(classification):监督学习,需要用已有的训练集来进行训练。交叉验证也实现了,进行参数优化使用。分类器可以保存在文件中以后使用。 回归(regression):将语音信号映射到一个回归值。 分割(segmenttation):有四个功能被实现了 [x] 固定大小的分割 [x] 静音检测(silence removal)
python编程语言无疑是人工智能最重要的语言之一,但是其中语音识别是当前人工智能比较热门的方向,百度的小度机器人、阿里的天猫精灵等其他各大公司都推出了各自的语音助手机器人,其识别算法主要是由RNN、LSTM、DNN-HMM等机器学习和深度学习技术做支撑。但训练这些模型的第一步就是将音频文件数据化,提取当中的语音特征。
本项目使用了EcapaTdnn模型实现的声纹识别,不排除以后会支持更多模型,同时本项目也支持了多种数据预处理方法,损失函数参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。
随着自然语言处理技术的飞速发展,语音识别作为一种重要的交互方式日益普及。本文将以使用Python与TensorFlow框架构建端到端语音识别系统为核心,深入探讨关键技术、实现步骤以及代码示例,帮助读者理解并实践语音识别系统的开发。
siri是由苹果开发的人工智能系统,很多人在无聊的时候就喜欢调戏siri,不过反倒被siri给调戏了。
在人工智能的辉煌进程中,语音识别技术无疑占据了一个至关重要的地位。从最初的简单命令识别到今日能理解复杂语境的智能助手,语音识别技术已经深入人类生活的各个角落。它不仅改变了我们与机器交流的方式,更开启了一个全新的互动时代。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 使用:pip install nlpcda https://github.com/425776024/nlpcda 介绍 一键中文数据增强工具,支持: 1.随机实体替换 2.近义词 3.近义近音字替换 4.随机字删除(内部细节:数字时间日期片段,内容不会删) 5.NER类 BIO 数据增强 6.随机置换邻近的字:研表究明,汉字序顺并不定一影响文字的阅读理解<<是乱序的 7.中文等价字替换(1 一 壹 ①,2 二 贰 ②)
区分说话主要是通过音高(基频)和音色(频谱包络-频谱最大幅度的连接线) 音高:http://ibillxia.github.io/blog/2013/05/16/audio-signal-processing-time-domain-pitch-python-realization/ 音色:http://ibillxia.github.io/blog/2013/05/18/audio-signal-processing-time-domain-timbre-python-realization/ 此工具箱通过提取语音的三个特征,然后对其进行修改,从而改变语音的音色等特征,从而转换语音特性 比如:通过调高基频,可以偏女性化,通过改变基频未固定值,可以类似机器人等等 f0 : ndarray F0 contour. 基频等高线 sp : ndarray Spectral envelope. 频谱包络 ap : ndarray Aperiodicity. 非周期性
【导读】唇语识别系统使用机器视觉技术,从图像中连续识别出人脸,判断其中正在说话的人,提取此人连续的口型变化特征,随即将连续变化的特征输入到唇语识别模型中,识别出讲话人口型对应的发音,随后根据识别出的发音,计算出可能性最大的自然语言语句。
近期,改编自金宇澄同名小说,知名导演王家卫执导的电视剧《繁花》的热播引起剧烈反响。原著小说以其细腻的笔触和丰富的上海风情,描绘了 20 世纪 60 年代至 90 年代上海市民的生活图景,是一部具有浓厚地域特色和时代感的作品。王家卫的影视作品以其独特的美学风格和深刻的情感表达著称。沪语版剧中使用上海话配音,字证腔圆让人耳目一新,相信后面肯定会有更多、更好的沪语影视作品呈现给观众,也会有更多的优秀专家深度参与,用沪语来叙述上海故事。
语音合成(TTS)是语音AI平台的基础设施,而声码器则决定着其中的声学模型以及合成质量。喜马拉雅FM音视频高级工程师 马力在LiveVideoStack线上交流分享中详细介绍了新一代合成音质更高,
随着人工智能技术的不断发展,语音克隆技术也得到了越来越多的关注和研究。目前,AI语音克隆技术已经可以实现让机器模拟出一个人的声音,甚至可以让机器模拟出一个人的语言习惯和表情。
目前网上关于tensorflow 的中文语音识别实现较少,而且结构功能较为简单。而百度在PaddlePaddle上的 Deepspeech2 实现功能却很强大,因此就做了一次大自然的搬运工把框架转为tensorflow….
机器学习(ML)是AI的一个子集,它侧重于使计算机能够从经验中学习和改进,而无需明确编程。这意味着ML算法可以分析数据、检测模式,并基于该分析进行预测或决策。机器学习的应用包括客户细分、欺诈检测、个性化推荐等等。
ASRT 是一套基于深度学习实现的语音识别系统,全称为 Auto Speech Recognition Tool,由 AI 柠檬博主开发并在 GitHub 上开源(GPL 3.0 协议)。本项目声学模型通过采用卷积神经网络(CNN)和连接性时序分类(CTC)方法,使用大量中文语音数据集进行训练,将声音转录为中文拼音,并通过语言模型,将拼音序列转换为中文文本。基于该模型,作者在 Windows 平台上实现了一个基于 ASRT 的语音识别应用软件它同样也在 GitHub 上开源了。
选自Medium 作者:DeviceHive 机器之心编译 参与:Nurhachu Null、刘晓坤 本文介绍了一种使用 TensorFlow 将音频进行分类(包括种类、场景等)的实现方案,包括备选模型、备选数据集、数据集准备、模型训练、结果提取等都有详细的引导,特别是作者还介绍了如何实现 web 接口并集成 IoT。 简介 有很多不同的项目和服务能够识别人类的语音,例如 Pocketsphinx、Google』s Speech API,等等。这些应用和服务能够以相当好的性能将人类的语音识别成文本,但是其中
语音合成(Text to Speech Synthesis)是一种将文本转化为自然语音输出的技术,在各行各业有着广泛用途。传统TTS是基于拼接和参数合成技术,效果上同真人语音的自然度尚有一定差距,效果已经达到上限,在实现上也依赖于复杂流水线,比如以文本分析为前端的语言模型、语音持续时间模型、声学特征预测模型、将频谱恢复成时域波形的声码器(vocoder)。这些组件都是基于大量领域专业知识,设计上很艰难,需要投入大量工程努力,对于手头资源有限的中小型玩家来说,这种“高大上”的技术似乎有些玩不起。
对于人类的语音识别,目前有很多不同的项目和服务,像Pocketsphinx,谷歌的语音API,以及其他等等。这样的应用程序和服务能够以一种很不错的质量识别语音然后转换成文本,但没有一个能够对麦克风所捕
作为人工智能领域的一个重要方向,语音识别近年来在深度学习(Deep Learning)的推动下取得了重大的突破,为人机语音交互应用的开发奠定了技术基础。语音识别技术演进及实现方法、效果,既是语音识别从业者需要系统掌握的知识,也是智能化应用开发者应当了解的内容。日前,微软研究院首席研究员、《解析深度学习-语音识别实践》第一作者俞栋接受CSDN专访,深入解析了基于深度学习的语音识别的最新技术方向,和微软团队的实践心得,并对微软开源的深度学习工具CNTK的迭代思路做了介绍。 俞栋介绍了deep CNN、LFMMI
CTC模型是语音识别模型中常见的模块之一,现有主流的语音识别系统经常采用该模型来实现端到端的语音识别。而CTC出现之前,语音识别模型的端到端识别效果还是相对较弱的,也就是说CTC解决了这一问题。
最近忙里偷闲,想把博士期间的基于深度学习的语音增强的代码整理下。想当初需要在C++,perl和matlab之间来回切换,同时需要准备pfile这个上世纪产物,十分头疼。一直想把它们重新整理,用一种语言实现全部,一键run整个流程,有点符合当下end2end的潮流思想。 Python的易用,Keras的简单,Tensorflow/CNTK等后台的强大(支持多GPU)为这个想法提供了可能。 我的最终目的是想实现一个通用的鲁棒的语音增强工具,同时研究如何让语音增强这个前端可以真正服务于语音识别的后端模型。但光靠我
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 利用36天的时间,系统地梳理了机器学习(ML)的一些经典算法,从算法思想,到算法实例,有的包括源码实现,有的包括实战分析,大致分类如下: 机器学习的概念总结 1 机器学习:不得不知的概念(1) 2 机器学习:不得不知的概念(2) 3 机器学习:不得不知的概念(3) 线性回归 4 回归分析简介 5 最小二乘法:背后的假设和原理(前篇
Whisper 是由 OpenAI 开发的一种高效的语音识别(ASR)技术,旨在将人类的语音转换成文本。
人的听力能够根据声音判断对方的性别、年龄或者来自哪个地方, 但是我们不能够判断出对方的面部特征。但AI可以,而且只需6秒。
在电影《钢铁侠》中,我们看到托尼·斯塔克在建造设备时与人工智能贾维斯交流。托尼向贾维斯描述了他需要的零件,贾维斯控制机械臂协助托尼完成任务。随着当今技术的发展,这种实现只是时间问题。因此,我决定尝试自己实现这个功能,用语音控制来操作机械臂,实现人工智能的简单应用。
关于作者:JunLiang,一个热爱挖掘的数据从业者,勤学好问、动手达人,期待与大家一起交流探讨机器学习相关内容~
近几年来语音识别技术得到了迅速发展,从手机中的Siri语音智能助手、微软的小娜以及各种平台的智能音箱等等,各种语音识别的项目得到了广泛应用。
本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对应项目中的AAMLoss,对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接,除此之外,还支持AMLoss、ARMLoss、CELoss等多种损失函数。
在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求,整合了语音识别的python程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在python程序中实现语音识别非常简单。整个代码实现下来还不到150行。
作品未来设想:并不是制作一个能自由行走的智能管家机器人之类的,那样的科技以及成本是不一个寒假可以ko!我们希望创造出智能机器人的头。
自然语言处理是什么?谁需要学习自然语言处理?自然语言处理在哪些地方应用?相关问题一直困扰着不少初学者。针对这一情况,作者结合教学经验和工程应用编写此书。《自然语言处理理论与实战》讲述自然语言处理相关学科知识和理论基础,并介绍使用这些知识的应用和工具,以及如何在实际环境中使用它们。由于自然语言处理的特殊性,其是一门多学科交叉的学科,初学者难以把握知识的广度和宽度,对侧重点不能全面掌握。《自然语言处理理论与实战》针对以上情况,经过科学调研分析,选择以理论结合实例的方式将内容呈现出来。其中涉及开发工具、Python语言、线性代数、概率论、统计学、语言学等工程上常用的知识介绍,然后介绍自然语言处理的核心理论和案例解析,最后通过几个综合性的例子完成自然语言处理的学习和深入。《自然语言处理理论与实战》旨在帮助读者快速、高效地学习自然语言处理和人工智能技术。
深度神经网络比如WaveNet在语音合成中效果好但是由于计算复杂度高很难实时;DSP速度快,但是合成质量不高。LPCNet结合了信号处理和深度神经网络提升语音合成的效果。
原文链接:https://github.com/fighting41love/funNLP
深度学习技术在当今技术市场上面尚有余力和开发空间的,主流落地领域主要有:视觉,听觉,AIGC这三大板块。目前视觉板块的框架和主流技术在我上一篇基于Yolov7-LPRNet的动态车牌目标识别算法模型已有较为详细的解说。
自然语言处理(Natural Language Processing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究人与计算机之间用自然语言进行有效通信的理论和方法。融语言学、计算机科学、数学等于一体的科学。旨在从文本数据中提取信息。目的是让计算机处理或“理解”自然语言,以执行自动翻译、文本分类和情感分析等。自然语言处理是人工智能中最为困难的问题之一。
训练好的模型会保存在./nemo_experiments/Tacotron2/训练时间/checkpoints/Tacotron2.nemo文件中。
在本文中,我们提供了一个用于训练语音识别的RNN的简短教程,其中包含了GitHub项目链接。 作者:Matthew Rubashkin、Matt Mollison 硅谷数据科学公司 在SVDS的深度
欢迎来到这篇 ChatTTS 保姆级教程!今天我们将深入探讨 ChatTTS,从入门到精通,让你掌握这款强大的文本转语音工具。不论你是初学者还是有一定基础的用户,都能在这篇文章中找到有用的信息。
Kaldi 是一个开源的语音识别系统,由 Daniel Povey 主导开发,在很多语音识别测试和应用中广泛使用。但它依赖大量脚本语言,且核心算法是用 C++ 编写的,对声学模型的更新和代码调试带来一定难度。
多层感知机(Multilayer Perceptron,简称 MLP)是一种基本的人工神经网络模型,其结构由多个神经元组成的多层结构。它是一种前馈式神经网络,通常用于解决分类和回归问题。
导语:读书是一生的功课,技术人通过读书实现自我提升,学习优秀知识沉淀。腾讯TEG读书会本期特邀腾讯AI Lab语音识别中心副总监苏丹、腾讯AI医疗中心病理和治疗团队负责人韩骁、腾讯AI Lab专家研究员赵沛霖为大家带来人工智能方向好书推荐第二期。来看看技术大牛在读什么,收藏优质内容,愿本期书单助您更专业。 AI Lab语音识别中心副总监,17年加入公司,从事语音研究多年。 《Pattern Recognition and Machine Learning》 作者:Christopher M. Bi
领取专属 10元无门槛券
手把手带您无忧上云