首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《Scikit-Learn与TensorFlow机器学习实用指南》 第2章 一个完整的机器学习项目使用真实数据项目概览获取数据数据探索和可视化、发现规律为机器学习算法准备数据选择并训练模型模型微调启动

    本章中,你会假装作为被一家地产公司刚刚雇佣的数据科学家,完整地学习一个案例项目。下面是主要步骤: 项目概述。 获取数据。 发现并可视化数据,发现规律。 为机器学习算法准备数据。 选择模型,进行训练。 微调模型。 给出解决方案。 部署、监控、维护系统。 使用真实数据 学习机器学习时,最好使用真实数据,而不是人工数据集。幸运的是,有上千个开源数据集可以进行选择,涵盖多个领域。以下是一些可以查找的数据的地方: 流行的开源数据仓库: UC Irvine Machine Learning Repository K

    015

    GEE APP——土壤水分资源管理器

    由于土壤水分含量与地球气候和天气以及干旱、洪水或山体滑坡等现象有关,因此对许多科学和专业用户来说都非常宝贵。遥感技术为连续测量这一变量提供了独特的可能性。特别是在农业领域,对高空间分辨率绘图的需求非常强烈。然而,目前可操作的土壤水分产品只有中粗空间分辨率(≥1 公里)。本研究介绍了一种基于机器学习(ML)的高空间分辨率(50 米)土壤水分绘图方法,该方法基于 Landsat-8 光学和热图像、哥白尼哨兵-1 C 波段合成孔径雷达图像以及可在谷歌地球引擎中执行的模型数据的整合。这种方法的新颖之处在于将完全由数据驱动的 ML 概念应用于地表土壤水分含量的全球估算。来自国际土壤水分网络的全球分布式原位数据是模型训练的输入。在独立验证数据集的基础上,得出的整体估算精度(根均方误差和 R²)分别为 0.04 m3-m-3 和 0.81。除了检索模型本身,本文还介绍了一个收集训练数据的框架和一个用于土壤水分绘图的独立 Python 软件包。谷歌地球引擎 Python 应用程序接口为完全基于云的数据收集和检索的执行提供了便利。对于土壤湿度检索,它无需下载或预处理任何输入数据集。

    01

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券