之前我们在利用GPU进行深度学习的时候,都要去NVIDIA的官网下载CUDA的安装程序和cudnn的压缩包,然后再进行很繁琐的系统环境配置。不仅环境配置麻烦,而且还特别容易配置错误,特别还有CUDA和cudnn版本的对应也特别容易搞错,但是利用anaconda安装配置pytorch和paddlepaddle环境的时候会自动帮我们配置好cuda和cudnn。这篇博客就是针对小白的保姆级深度学习的环境配置教程
本文主要对 Swin-Transformer-Object-Detection[1] 进行简要介绍,并考虑到其环境安装对新手而言是一个常见的挑战,因此本文实现了其对应的环境安装。
这里选用的是cpu版本,命令如下:conda install pytorch torchvision cpuonly -c pytorch 注意:为加快相关包的下载速度,推荐配置国内源,比如清华源等。 在miniconda中安装其他库,可用pip install 库名 -i https://pypi.doubanio.com/simple命令来进行操作。
如果已有环境能够满足所需的环境依赖,则不用进行环境安装。直接激活已有的环境(E.g. source activate tensorflow_py3)或者打开某个环境的Jupyter Notebook即可,可以跳过后面的操作指引。
创建虚拟环境还是相对较快的,它会自动为本环境安装一些基本的库,等待时间无需很长,成功之后界面如下所示:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
安装好 PyTorch1.5.0 之后,在 Anaconda Prompt 中激活新创建的环境变量之后,import torch 并 打印 torch 的版本没有问题,说明 PyTorch 已经安装成功。但是打开 Jupyter Notebook 后 import torch 却提示 “No module named torch”
这里的操作系统使用的是Ubuntu 18.04,下载支持Python 3.6的Anaconda:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
anaconda 2022.10 windows 版本,https://repo.anaconda.com/archive/
在执行命令 pip install causal_conv1d 和 mamba_ssm 出错:
在安装使用 detectron2 的时候碰到**Kernel not compiled with GPU support **问题,前后拖了好久都没解决,现总结一下以备以后查阅。
PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序它主要由Facebook的人工智能小组开发,不仅能够实现强大的GPU加速,同时还支持动态神经网络,这一点是现在很多主流框架如TensorFlow都不支持的。PyTorch提供了两个高级功能:
树莓派是一个香烟盒大小的电脑,能运行window(IOT)和linux系统。可以当做一台普通的电脑用来办公上网,还有裸露的针脚可以用来控制你自己设计的电路。比如读取各种(温度,重力,加速度)传感器信息,也可以驱动马达和蜂鸣器,摄像头什么的。
入门深度学习,很多人经历了从入门到放弃的心酸历程,且千军万马倒在了入门第一道关卡:环境配置问题。俗话说,环境配不对,学习两行泪。
假设已经装好了pycharm、anaconda,并且新建了一个conda虚拟环境(我的虚拟环境名为pytorch)。接下来需要安装新版的显卡驱动,安装cuda、cudnn、pytorch和torchvision,这几个环境的版本互相关联,为了能使用更新的项目,尽量安装最新版本的环境。
TI-ONE平台安装cuda指引:https://cloud.tencent.com/developer/article/1845781
LibTorch是PyTorch深度学习框架的C++版本,它提供了用于构建和训练神经网络模型的高级API和工具。LibTorch允许你在离线环境中使用PyTorch模型,而无需依赖Python解释器。
Stable Diffusion 是热门的文本到图像的生成扩散模型,本文介绍了如何准备其 WebUI 环境。
今天在自己的 PC 上部署和体验了ChatGLM-6B的推理服务,简单记录一下流程。
如果是 NUS,NTU 或者 ASTAR 的学生,可以直接用自己的学校 ID 登录。登录不上的话可以发邮件联系 nscc 工作人员即可,基本上第二天就会回复解决。
进入根用户方法:https://mp.weixin.qq.com/s/RT_Yw-NB7LS1f1P59yPrbg
本篇文章就带领大家用最简单地方式安装TF2.0正式版本(CPU与GPU),由我来踩坑,方便大家体验正式版本的TF2.0。
安装Miniconda并配置好环境变量:去Miniconda官网找到对应版本(我选的是Windows installers中的Python 3.8 Miniconda3 Windows 64-bit),安装推荐教程;
自 2017 年初首次推出,PyTorch 很快成为 AI 研究人员的热门选择并受到推崇。PyTorch 有许多优势,如采用 Python 语言、动态图机制、网络构建灵活以及拥有强大的社群等。由于其灵活、动态的编程环境和用户友好的界面,PyTorch 是快速实验的理想选择。
Anaconda Notebook本身已经是一个很好的工具,非常适用于学习,不过在企业中应用时,该工具总感觉差了一点,经常需要安装各种包,而有些包未必能通过conda进行安装。因此,我们通过Docker镜像来构建满足自己的机器学习或者深度学习环境,尽量减少大家在环境安装上浪费的时间。
导语:TensorRT立项之初的名字叫做GPU Inference Engine(简称GIE),是NVIDIA 推出的一款基于CUDA和cudnn的神经网络推断加速引擎,TensorRT现已支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高效的部署推理。
Anaconda安装:Anaconda是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。使用Anaconda可以通过创建多个独立的Python环境,避免用户的Python环境安装太多不同版本依赖导致冲突。
我们希望在汇集行业领先的预训练模型,减少开发者的重复研发成本,提供更加绿色环保、开源开放的AI开发环境和模型服务,助力绿色“数字经济”事业的建设。 ModelScope平台将以开源的方式提供多类优质模型,开发者可在平台上免费体验与下载使用。
最开始写C语言代码的时候,人们使用vi,记事本等软件写代码,写完了之后用GCC编译,然后运行编译结果,就是二进制文件。python也可以这样做,用记事本写完代码,保存成如test.py的文件后,通过命令python test.py可以运行这一文件。最初的C语言代码都是通过这种方式写的。但是人们很快发现了一个问题,就是这么弄太麻烦了,编写用vi,运行得切出去用shell,出错了再切回vi改代码。这要是编写、运行、调试都能在同一个窗口里进行,再来点语法检查,高亮,颜色,代码提示,那写代码的效率不就高多了吗?所以就有了Microsoft Visual C++等写代码工具,这些工具除了提供方便的文本编辑功能,还能够连接到编译器(C/C++)、解释器(java,python,R),把编译器和解释器的运行结果显示在自己的界面上,这些工具被称为IDE(集成开发环境)。正因为编译器,解释器不是它的组成部分,pycharm中每个项目都要指定一个interpreter才能运行。即某个路径下的python.exe。其他的IDE也都要指定运行环境。
NeuralProphet是一个python库,用于基于神经网络对时间序列数据进行建模。它建立在PyTorch之上,并受到Facebook Prophet和AR-Net库的极大启发。
最近在业务中有一个生成一批音频的需求,尝试使用有道开源的 EmotiVoice 项目来实现。然而,在部署 EmotiVoice 的过程中,CUDA 和 PyTorch 环境配置总是有问题。经过一天的斗争,决定寻求其他解决方案。在同事的推荐下,了解到腾讯云还在内测的高性能应用服务 HAI。通过使用 HAI,整个部署过程变得无比丝滑,迅速完成了任务。这里记录一下整个过程。
-n, –name:我们可以根据环境名称来创建一个 conda 环境,假设我们的环境名称为 my_env
本文档是毕业设计——基于深度学习的电动自行车头盔佩戴检测系统的开发环境配置说明文档,该文档包括运行环境说明以及基本环境配置两大部分。在程序运行前请认真查看此文档,并按照此文档说明对运行程序的设备环境进行对应配置。
上一篇系列文章向大家介绍了 Hello AI World 在Jetson NANO 2GB 上运行Hello AI World。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
https://github.com/open-mmlab/mmdetection
由腾讯微信事业群和清华大学联合举办,腾讯云TI平台中的机器学习平台(TI-ONE)提供大赛资源支持的2021中国高校计算机大赛—微信大数据挑战赛正如火如荼的进行中。
由腾讯微信事业群和清华大学联合举办,腾讯云TI平台(TI-ONE)提供大赛资源支持的2021中国高校计算机大赛—微信大数据挑战赛正如火如荼的进行中。 本次大赛是以企业真实场景和实际脱敏数据为基础、面向全球开放的算法竞赛。旨在通过竞技的方式,提升人们对数据分析与处理的算法研究与技术应用能力,探索大数据的核心科学与技术问题,尝试创新大数据技术,推动大数据的产学研用。 为了给与选手们更好的参赛体验以及保护大赛数据的安全性,在复赛阶段,微信大数据挑战赛携手腾讯云机器学习平台(以下称TI-ONE),为复赛选手争取到了
今日,启科量子正式宣布将其首个自主研发的量子部署工具——Runtime 正式开源(开源地址已附于文末)。
深度学习(Deep Learning)第一坑就是机器学习平台的选取和开发环境的安装,以下是重装两次系统后的安装经验。
本文主要详细介绍了torch_pgu版本的安装,其中包括cuda和cudnn的环境配置图解流程,以及如何使用conda命令进行虚拟环境的创建、删除、使用等操作,列举conda的常用命令集,包括如何实现Windows之间的conda环境的迁移;除以之外,介绍了pycharm断点调试的详细流程和不同的调试方法。
敢一个时髦,我也来玩一下TTS,因为有一个想法,自己打的文字可以用自己的声音读出来,找到一个开源项目,就开始搞起来试试,安装环境还是挺多坑的。
首先我想告诉你,从事编程开发这一行,要学会的是学习的方式方法。方向对了,才能事半功倍。而我认为最快且行之有效的技术技能学习,就是上手实践。先不要搞太多的理论,买回来的自行车不能上来就拆,得先想办法骑起来。
提供一种方式去获取数据及其label,它的功能是如何获取每一个数据及其label,并告诉我们总共有多少的数据
随着人工智能技术的不断发展,语音克隆技术也得到了越来越多的关注和研究。目前,AI语音克隆技术已经可以实现让机器模拟出一个人的声音,甚至可以让机器模拟出一个人的语言习惯和表情。
mmdetection 是商汤科技(2018 COCO 目标检测挑战赛冠军)和香港中文大学开源的基于Pytorch实现的深度学习目标检测工具箱,性能强大,运算效率高,配置化编程,比较容易训练、测试。但pytorch模型不易于部署,运算速度还有进一步提升的空间,当前比较有效的方法是将模型转换为行为相同的tensorrt模型,本文记录转换流程。 任务思路 转换mmdetection 的 pytorch模型到tensorrt模型有多种方法,本文使用 mmdetection-to-tensorrt 库作为核
该项目用于将句子中 [MASK] 位置通过生成模型还原,以实现 UIE 信息抽取中 Mask Then Filling 数据增强策略。
让一张照片动起来,人脸跟着音乐一起挤眉弄眼,需要一个叫做一阶运动模型 (First Order Motion Model)来搞定。
领取专属 10元无门槛券
手把手带您无忧上云