刚刚,Facebook宣布推出PyTorch Hub,一个包含计算机视觉、自然语言处理领域的诸多经典模型的聚合中心,让你调用起来更方便。
导读:6月11日,Facebook PyTorch 团队推出了全新 API PyTorch Hub,提供模型的基本构建模块,用于提高机器学习研究的模型复现性。PyTorch Hub 包含一个经过预训练的模型库,内置对Colab的支持,而且能够与Papers With Code 集成。另外重要的一点是,它的整个工作流程大大简化。
机器学习论文的可复现性一直是个难题。许多机器学习相关论文要么无法复现,要么难以重现。有时候论文读者经常为了调用各种经典机器学习模型,还要重复造轮子。
机器学习领域,可复现性是一项重要的需求。但是,许多机器学习出版成果难以复现,甚至无法复现。随着数量上逐年增长的出版成果,包括数以万计的 arXiv 文章和大会投稿,对于研究的可复现性比以往更加重要了。虽然许多研究都附带了代码和训练模型,尽管他们对使用者有所帮助,但仍然需要使用者自己去研究如何使用。
ResNet、BERT、GPT、VGG、PGAN、MobileNet等深度学习领域的经典模型,只需输入一行代码,就能一键调用。
无论 ResNet、BERT、GPT、VGG、PGAN,还是 MobileNet,只需一行代码轻松复现!
近日,PyTorch 社区发布了一个深度学习工具包 PyTorch Hub,PyTorch Hub 由一个预训练模型仓库组成,可用于提高研究工作的复现性以及新的研究。同时它还内置了对Google Colab的支持,并与Papers With Code集成。
Pytorch Hub is a pre-trained model repository designed to facilitate research reproducibility.
可重现性是许多研究领域的基本要求,包括基于机器学习技术的研究领域。然而,许多机器学习出版物要么不可再现,要么难以复制。
无法直接从 HuggingFace[1] 下载模型时,可借助 https://github.com/AlphaHinex/hf-models 仓库,使用 GitHub Actions[2] 构建一个 Docker 镜像,在镜像中用 huggingface_hub[3] 下载好所需模型,再将镜像推送至 Docker Hub[4],最后以下载镜像方式曲线下载模型。
前段时间,业界鼎鼎有名的动漫风格转化滤镜库AnimeGAN发布了最新的v2版本,一时间街谈巷议,风头无两。提起二次元,目前国内用户基数最大的无疑是抖音客户端,其内置的一款动画转换滤镜“变身漫画”,能够让用户在直播中,把自己的实际外貌转换为二次元“画风”。对于二次元粉丝来说,“打破次元壁,变身纸片人”这种自娱自乐方式可谓屡试不爽:
使用PyTorch Hub只需一行代码即可导入需要的模型,PyTorch Hub是一个简易API和工作流程,为复现研究提供了基本构建模块,包含预训练模型库。
Pytorch Hub是一个帮助研究者实现模型再现、快速推理验证的预训练模型库与一套相关的API框架。支持远程从github上下载指定模型、上传与分享训练好的模型、支持从本地加载预训练模型、自定义模型。支持模型远程加载与本地推理、当前Pytorch Hub已经对接到Torchvision、YOLOv5、YOLOv8、pytorchvideo等视觉框架
PyTorch Hub透过API和工作流程,提供开发者基本的模型,来重现机器学习相关的研究,脸书发布内建18种预先训练模型工具,方便重制AI研究
对应解决方式是设置PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
在本月早些时候,Elastic发布了Elasticsearch Relevance Engine(Elasticsearch相关性引擎),该引擎通过多种方式,为用户提供提高相关性的能力,其中特别重要的一点,就是允许开发人员在 Elastic 中管理和使用自己的transformer模型。
它叫ResNeXt WSL,有超过8亿个参数,用Instagram上面的9.4亿张图做了 (弱监督预训练) ,用ImageNet做了微调。
对于不同人群可能有不同的答案,科研人员可能更偏爱PyTorch,因其简单易用,能够快速验证idea来抢占先机发论文。
坊间传闻:「TensorFlow 适合业界,PyTorch 适合学界」。都 2022 年了,还是这样吗?
PyTorch 发布于 2016 并迅速成为深度学习研究人员的首选工具。随着PyTorch的逐步发展,它已经不仅仅是一个原型工具。现在PyTorch成为一个成熟的框架,并且逐渐成为学术界和工业界的标准。研究人员和机器学习工程师可以在本地 Jupyter 的服务器、云平台多节点 GPU 集群以及边缘智能设备高效运行 PyTorch。
我们深知一张图片胜过千言万语,但到底为什么那些著名的画作即使很久没再看过,也能让人如此印象深刻呢?
除了🤗 Transformers 的 notebooks 之外,还有示例脚本演示如何使用PyTorch、TensorFlow或JAX/Flax训练模型的方法。
PyTorch 2.0 官宣了一个重要特性 —— torch.compile,这一特性将 PyTorch 的性能推向了新的高度,并将 PyTorch 的部分内容从 C++ 移回 Python。torch.compile 是一个完全附加的(可选的)特性,因此 PyTorch 2.0 是 100% 向后兼容的。
如果未设置此参数,环境变量TORCH_HUB_DIR 会被首先搜寻,~/.torch/hub 将被创建并用作后备。
---- 新智元报道 编辑:桃子 好困 【新智元导读】万万没想到,谷歌PaLM竟被开源了,但是微缩版的。 谷歌未开源的PaLM,网友竟给开源了。 昨天,一位开发者在GitHub上开源了三种微缩版的PaLM模型:参数分别为1.5亿(PalM-150m),4.1亿(PalM-410m)和10亿(PalM-1b)。 项目地址:https://github.com/conceptofmind/PaLM 这三种模型在谷歌C4数据集进行了训练,上下文长度为8k。未来,还有20亿参数的模型正在训练中。 谷歌
www.youtube-nocookie.com/embed/ajPx5LwJD-I
这是一个面向编程新手、热爱编程、对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编程语言的项目、让生活变得更美好的工具、书籍、学习笔记、教程等,这些开源项目大多都是非常容易上手,而且非常 Cool。主要是希望大家能动手用起来,加入到开源社区中。
。镜像文件也上传到docker hub了,可以一步步运行起来,不过需要先安装好docker。docker的安装可参考官方文档。https://docs.docker.com/docker-for-windows/install/
NLP领域今年的竞争真可谓激烈。短短一个多月的时间,BERT又重新杀回GLUE测试排行榜第一名。
作者 | DavidZh 出品 | 人工智能头条(AI_Thinker) 知名深度学习框架 Caffe2 最近正式将代码并入了 PyTorch。 目前供职于 Facebook,同时也是 Caffe2 作者贾扬清在知乎回答了相关问题: 因为 PyTorch 有优秀的前端,Caffe2 有优秀的后端,整合起来以后可以进一步最大化开发者的效率。目前 FAIR(Facebook AI 研究院)大概有超过一半的项目在使用 PyTorch,而产品线全线在使用 Caffe2,所以两边都有很强的动力来整合优势。 按照贾扬清
机器之心报道 编辑:杜伟 Hugging Face NLP 课程开课了,所有课程完全免费。 NLP 领域的小伙伴应该都非常熟悉大名鼎鼎的 Hugging Face,这家专注于解决各种 NLP 问题的初创公司为社区带来了很多有益的技术成果。去年,该团队的 Transformers 代码库论文获得了 EMNLP 2020 最佳 demo 奖。今年 4 月,该团队发布了适用于多 GPU、TPU 和混合精度训练的 PyTorch 新库「Accelerate」。 近日,Hugging Face 在其官方推特上宣布推出
PyTorch 自带很多预训练模型,在使用时会自动下载,本文记录修改下载位置的方法。 背景 PyTorch 下载预训练模型总得放个地方无可厚非,但默认路径在 Windows 中是 C:\Users\<username>\.cache ,很可能占用 C 盘几个 G 的空间,尝试修改该路径 模型加方式 当pretrained为True时,PyTorch会调用torch.utils的load_state_dict_from_url函数 load_state_dict_from_url函数最终调用torch
www.youtube-nocookie.com/embed/KWwzcmG98Ds
第一辆汽车诞生之初,时速只有 16 公里,甚至不如马车跑得快,很长一段时间,汽车尴尬地像一种“很酷的玩具”。人工智能作图的出现也是如此。
介绍docker基本知识 学会打包一个自定义的docker并让其他人可以成功使用
大数据文摘授权转载自数据派THU 作者:Thomas Chaigneau 翻译:欧阳锦 校对:和中华 ONNX是一种用于神经网络的机器学习格式。它是可移植的,开源的,并且在不牺牲准确性的情况下提高推理速度,真的很厉害。 我发现了很多关于ONNX基准的文章,但没有一篇文章介绍将其用于真实世界NLP任务的简便方法。我还在Hugging Face的discord server上回答了很多关于ONNX以及将其用于NLP的最佳方式的问题。 这就是我决定写这篇博文的原因。我想帮助你使用ONNX与超强的Transform
下表表示库中对这些模型的当前支持,它们是否有 Python 分词器(称为“slow”)。由🤗 Tokenizers 库支持的“fast”分词器,它们是否在 Jax(通过 Flax)、PyTorch 和/或 TensorFlow 中有支持。
简单来说,docker是一个用来装应用的容器,就像杯子可以装水,笔筒可以放笔,书包可以放书,可以把深度学习放在docker中,可以把网站放入docker中,可以把任何想得到的程序放在docker中。
关注我们丨文末赠书 太赞了!最近,著名的深度学习框架PyTorch的官方网站宣布PyTorch 1.11正式发布。该版本自1.10版本以来有超过3300次代码提交,由434位贡献者协同完成。 同时,PyTorch还发布了两个新库TorchData和functorch的beta版本,引起无数程序员狂欢热议。 为你总结了本次更新的要点: ● TorchData,这是一个通用模块化数据加载原语的新库,用于轻松构建灵活和高性能的数据管道。 ● functorch,这是一个将可组合函数转换添加到PyTorch的新
还记得前些日子轰动一时的 BigGAN 模型吗?生成对抗网络(GAN)作为当前最热门的技术之一,最近在图像生成方面的成果颇受人关注。近日,由 DeepMind 和赫瑞瓦特大学组成的科研人员公布的 BigGAN 模型,被称为“史上最强 GAN 生成器”,可合成食物照片、风景肖像和动物照片,其图片效果十分逼真,在 ImageNet 的测评集上从之前的最高分 52.52 提升到 66.3,效果提升非常显著。
🤗 Transformers 中有几个多语言模型,它们的推理用法与单语模型不同。不过,并非所有多语言模型的用法都不同。一些模型,如bert-base-multilingual-uncased,可以像单语模型一样使用。本指南将向您展示如何使用推理中用法不同的多语言模型。
深度学习作为人工智能的一个重要分支,在过去十年中取得了显著的进展。PyTorch 和 TensorFlow 是目前最受欢迎、最强大的两个深度学习框架,它们各自拥有独特的特点和优势。
作者:Thomas Chaigneau 翻译:欧阳锦校对:和中华 本文约3000字,建议阅读7分钟本文介绍了如何使用ONNX构建真实世界的NLP应用。 如何用ONNX构建真实世界的NLP应用,而不仅仅是为了张量做基准测试。 图片源自网络 ONNX是一种用于神经网络的机器学习格式。它是可移植的,开源的,并且在不牺牲准确性的情况下提高推理速度,真的很厉害。 我发现了很多关于ONNX基准的文章,但没有一篇文章介绍将其用于真实世界NLP任务的简便方法。我还在Hugging Face的discord server
专注于机器学习应用的人们知道,从训练好的模型到实际的工业生产工具还有一定的距离。其中工作量很大的地方在于将模型打包,预留 API 接口,并和现有的生产系统相结合。近日,GitHub 上有了这样一个项目,能够让用户一行代码将任意模型打包为 API。这一工具无疑能够帮助开发者在实际的生产应用中快速部署模型。
与传统的计算机视觉技术不同,DETR将目标检测作为一个直接的集合预测问题来处理。它由一个基于集合的全局损失和一个Transformer encoder-decoder 结构组成,该全局损失通过二分匹配强制进行唯一预测。给定固定的学习对象查询集,则DETR会考虑对象与全局图像上下文之间的关系,以直接并行并行输出最终的预测集。由于这种并行性,DETR非常快速和高效。
上一篇的初体验之后,本篇我们继续探索,将transformers模型导出到onnx。这里主要参考huggingface的官方文档:https://huggingface.co/docs/transformers/v4.20.1/en/serialization#exporting-a-model-to-onnx。
领取专属 10元无门槛券
手把手带您无忧上云