衡量一个因子的好坏还有一个指标,就是稳定性。因子的稳定性直接决定了你的调仓频率。
Ex1: Given a data = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36],求Q1, Q2, Q3, IQR Solving: 步骤: 1. 排序,从小到大排列data,data = [6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49] 2. 计算分位数的位置 3. 给出分位数
下面的代码和数据源主要来自:https://stackoverflow.com/questions/51063842/create-multiple-columns-in-summarize,以计算分位数为例。
这个函数的使用格式为:apply(X,MARGIN, FUN, ...)。它应用的数据类型是数组或矩阵,返回值类型由FUN函数结果的长度确定。
在使用机器学习构建预测模型时,我们不只是想知道“预测值(点预测)”,而是想知道“预测值落在某个范围内的可能性有多大(区间预测)”。例如当需要进行需求预测时,如果只储备最可能的需求预测量,那么缺货的概率非常的大。但是如果库存处于预测的第95个百分位数(需求有95%的可能性小于或等于该值),那么缺货数量会减少到大约20分之1。
lunimous 可以开启 dashborad rgw 通过 prometheus-nginxlog-exporter 可以解析 Nginx 日志,还有一些正则可以去处理,然后通过 relabel 的配置,让其在指标数据上打上标签。
https://academic.oup.com/genetics/article/225/3/iyad161/7258327?login=false
机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。寻找函数最小值的最常用方法是“梯度下降”。把损失函数想象成起伏的山脉,梯度下降就像从山顶滑下,目的是到达山脉的最低点。
⛳前言:🤔GEO的数据在分析之前要进行标准化处理,这已经是老生常谈的事情了。👉🏻但是如何进行标准化,以及选择那种方法进行标准化,目前依然是很多小白甚至是生物信息学家所迷惑的地方。 💡今天在这里,我对于两种常见的标准化方法进行一个简单的解释 ---- 今天拿GSE97508这个数据为例子来降解。 首先,我们先看一下我们拿到手后没有经过任何处理的原始数据。(这里说的没有经过任何处理并不是说数据真没有经过任何处理,其实在研究人员上传数据时,这些数据就已经经过各种处理,与真正意义上的原始数据差别很大) 先画一个箱
如果我们手上有一个数值向量,怎么用R去获取这个向量的各个分位数值呢?我们来看个具体的例子
上次,我们利用get_clean_factor_and_forward_returns这个函数,可以获得alphalens能够接受的一种factor数据,接下来,我们就是利用这个函数返回给我们的数据去进行因子的分析。我们队这个函数的返回值命名为factor_data,即factor_date = get_clean_factor_and_forward_returns(......)。
【AI科技大本营导读】机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。寻找函数最小值的最常用方法是“梯度下降”。把损失函数想象成起伏的山脉,梯度下降就像从山顶滑下,目的是到达山脉的最低点。
我进行一个小型仿真,以在不同样本量下测试Little的MCAR检验1。我可以研究线性回归中的异方差。我能够找到一些使用Little's MCAR检验的小样本研究人员的例子,因此我进行了仿真。
当处理连续数值型数据时,将其分箱 (binarize) 成几个组对之后的数据分析是很有用的。本贴介绍的 qcut 就能做到这件事情。首先引入要用到的工具包:
翻译 | 张建军 编辑 | 阿司匹林 机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。寻找函数最小值的最常用方法是“梯度下降”。把损失函数想象成起伏的山脉,梯度下降就像从山顶滑下,目的是到达山脉的最低点。 没有一个损失函数可以适用于所有类型的数据。损失函数的选择取决于许多因素,包括是否有离群点,机器学习算法的选择,运行梯度下降的时间效率,是否易于找到函数的导数,以及预测结果的置信度。这个博客的目的
histogram_quantile 是 Prometheus 特别常用的一个函数,比如经常把某个服务的 P99 响应时间来衡量服务质量。不过它到底是什么意思很难解释得清,特别是面向非技术的同学。另一方面,即使是资深的研发同学,在排查问题的时候也经常会发现 histogram_quantile 的数值出现一些反直觉的“异常现象”然后摸不着头脑。本文将结合原理和一些案例来分析这个问题。
前几日,《Systematic Trading》的作者,在其博客中探讨了这样一个问题,当市场波动加剧时是否应该调整动量策略的参数(从长周期到短周期)?
https://www.nature.com/articles/s41586-022-04808-9
Complete the following exercises using the code discussed during computer lab. Save your work in an R script as well as a Word document containing the necessary output and comments. Be sure to use notes in the script to justify any computations. If you have any questions, do not hesitate to ask
统计上,分位数亦称分位点,是指将一个随机变量的概率分布范围分为几个等份的数值点,常用的有中位数(即二分位数)、四分位数、百分位数等。
并且高耗时的服务非常容易成为整个服务的瓶颈,在高并发下很可能引发微服务雪崩效应,进而导致整个服务不可用。
大家好,我是蓝胖子,书接上文,我在prometheus描点原理那一篇文章里,留了一个思考题:
Prometheus,一个开源的监控系统,它通过获取应用程序中实时时间序列数据,然后根据强大的规则引擎,帮助用户监控机器和应用程序。
基础的时间序列预测任务的目标是给定历史序列,预测未来每个时间点的具体值。这种问题定义虽然简单直接,但是也面临着一些问题。在很多应用场景中,我们不仅希望能预测出未来的具体值,更希望能预测出未来取值不确定性,例如一个概率分布或者取值范围。在很多应用场景中,未来的时间序列本身就具有很强的不确定性,如果能预测出一个取值区间,会对业务决策带来更大的帮助,让我们对未来的最好情况和最差情况心里有个数。
四种指标类型的数据对象都是数字,如果要监控文本类的信息只能通过指标名称或者 label 来呈现,在 zabbix 一类的监控中指标类型本身支持 Log 和文本,当然在这里我们不是要讨论 Prometheus 的局限性,而是要看一看 Prometheus 是如何把数字玩出花活的。Counter 与 Gauge 比较好理解,我们简单的过一下 然后主要关注 Histogram 和 Summary
用这种方法计算斜率非常可靠。当误差呈正态分布且没有异常值时,斜率与OLS非常相似。
首先我们定义一下什么是攻防一体,在前面的回答中有答主采用的标准是——全明星球员并且入选最佳防守阵容。本篇文章采用的标准是:
一般在建立分类模型时,当我们进行特征工程的工作经常需要对连续型变量进行离散化的处理,也就是将连续型字段转成离散型字段。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/79088215
普通最小二乘法如何处理异常值?它对待一切事物都是一样的——它将它们平方!但是对于异常值,平方会显著增加它们对平均值等统计数据的巨大影响。
Prometheus 中提供了四种指标类型(参考:Prometheus 的指标类型),其中直方图(Histogram)和摘要(Summary)是最复杂和难以理解的,这篇文章就是为了帮助大家加深对这 histogram 类型指标的理解。
今天这篇推文小编给大家介绍一些QQ图(Quantile-Quantile Plots) 的绘制方法,主要内容如下:
这个工具的主要功能是一个统一的量化工具。通常,此方法支持任意Bit(>=2)来表示权重和激活值。在量化过程中,会根据预先定义的硬件目标将FakeQuantize操作自动插入到模型图中,以生成硬件友好的优化模型。然后,不同的量化算法可以调整FakeQuantize参数或删除一些操作以满足精度标准。最后这个伪量化模型可以在运行时被解释并将其转换为真正的低精度模型,从而获得真正的性能改善。
所有可以向Prometheus提供监控样本数据的程序都可以被称为一个Exporter.而Exporter的一个实例称为target,如图下所示,
前面给大家介绍了 过滤线粒体基因表达过高的细胞 基础版。今天给大家分享下进一步优化的代码(文中示例数据可在基础版推文找到)。
上次可视化系列说了瀑布图(可跳转)。它可以用于展示拥有相同的X轴变量数据(如相同的时间序列)、不同的Y轴离散型变量(如不同的类别变量)和Z轴数值变量。
本文介绍了如何利用Python实现RFM分析。首先,介绍了RFM分析的基本概念,然后详细讲解了如何在Python中实现这个过程。主要包括计算RFM各项分值、归总RFM分值、根据RFM分值对客户分类以及具体的算法实现。最后,介绍了在Python中应用RFM分析的示例代码。
这里以inDrop实验数据举例,spliced/unspliced的RNA可以通过:
填充样本:使用box-plot定义变量的数值上下界,以上界填充极大值,以下界填充最小值
我们先来看看prometheus里的数据模型是怎么样的,只有知道了数据结构,才能理解对后续这些数据如何描点,如何计算出相应指标值。
vert参数的默认值为True,表示竖直方向的小提琴图,当取值WieFalse时,绘制水平方向的小提琴图,用法如下
在 Kubernetes 社区中,PLEG is not healthy 成名已久,只要出现这个报错,就有很大概率造成 Node 状态变成 NotReady。社区相关的 issue 也有一大把,先列几个给你们看看:
Prometheus 是一个开源的,具有丰富功能的监控与警报工具包,它于2012年由SoundCloud发起,其设计目标是实现一套在多维数据世界且可靠的监控系统,现在已经成为了云原生计算基金会的重要项目之一。Prometheus的设计理念非常符合今天分布式计算,微服务和云基础设施的需求,可以说是当下最主流的监控与警告系统之一。
有时候,市场的情绪会演绎到比较夸张的位置,其实很简单的指标就可以量化,比如过去20个交易日的累计涨跌幅,同时计算过去滚动涨跌幅的分位数就大致可以判断市场情绪。
一直以来都想知道现在「Go服务监控」是如何搭建和工作的,于是最近就抽了点时间去学习下这服务监控的搭建过程。
在芯片分析中,使用探针的信号强度来衡量表达量,但是探针的信号强度会受到噪声的干扰,所以需要去除背景噪声。
神州数码钛合金战队是一支致力于为企业提供分布式数据库 TiDB 整体解决方案的专业技术团队。团队成员拥有丰富的数据库从业背景,全部拥有 TiDB 高级资格证书,并活跃于 TiDB 开源社区,是官方认证合作伙伴。目前已为 10+ 客户提供了专业的 TiDB 交付服务,涵盖金融、证券、物流、电力、政府、零售等重点行业。
参考: https://github.com/velocyto-team/velocyto.R/issues/16
领取专属 10元无门槛券
手把手带您无忧上云