这一节将介绍更多的R图形资源。首先是定制R图形的一些常用方法,主要涉及数据和模型的图形绘制。然后是如何自定义其他类型的图形或点线等元素。
今天是大年初二,这篇文章我只想传达一点: 没有什么菜鸟级别的生物信息学数据处理是不能通过Google得到解决方案的,如果有,请换个关键词继续Google! 第一部分 首先用两分钟的时间简单介绍一下R语言: 因为这个语言是肉丝儿(Ross Ihaka)和萝卜特(Robert Gentleman)两个人1992年在S语言的基础上发明出来的开源语言,所以叫做R语言。这两个人是统计学教授出身,所以R语言在统计学方面有着纯正的血统!如果你平时的工作和统计相关,你好意思不会点R语言么? 另外,在R语言的官网上,有这样一
除了统计分析之外,R语言还具有强大的数据可视化功能,这里面除了一些常用的基本函数如plot(),还有‘grid’、‘lattice’和‘ggplot2’等各种包。在这里我主要介绍一些基本的绘图功能以及相关概念,方便大家后续自行学习其它绘图R包。
之前的几期推文模仿了来自于论文 Core gut microbial communities are maintained by beneficial interactions and strain
在昨天的文章人人都能看懂的Matplotlib绘图原理中,我们对Matplotlib的绘图机制进行了讲解,在弄清楚plt.xxxx和ax.xxxx中plt和ax区别之后,本文继续讲解xxxx究竟是什么。
刚刚结束了本年度的最后一次扩增子课程和宏基因组课程(都是爆满,2020年的课程提前开始报名了。就看后面的转录组和单细胞课程的参与度了),数据分析得到的大部分结果都可以用ImageGP绘图展示。在运行流程之余,收到学员的反馈,说希望有一个手册来熟悉网站有哪些功能。在此之前,我们也零星收到一些关于网站的使用咨询和功能建议,因次借这次的ImageGP答疑,来给ImageGP正正名,是的,它不是imagp,也不是imap,更不是GPS(此处有个省略50字的悲伤故事)。它是ImageGP — 画个Picture。
列线图(Alignment Diagram),又称诺莫图(Nomogram图),它是建立在多因素回归分析的基础上,这里的回归既包括Logistic回归也包括cox回归,通过回归分析将多个预测指标进行整合,然后采用带有刻度的线段,表达预测模型中各个变量之间的相互关系。
学完R语言的基本操作后,我们还可以继续学习R的几大著名而且使用强大的包,今天讲其中的一个,就是ggplot2,至于这个包的评价和地位,我就不多说了,感兴趣可以百度,它绝对是数据可视化的利器,好了,我们先来开始简单介绍一下这个包. 先说说我们人手工作图的方式,1,先画一个坐标轴,2,然后根据数据在图上画图形3,在基础的图形上加一些注释,或加一些对比.基本上这就是我们作图的方式,那么ggplot2就跟这差不多了,1.先设定坐标轴和数据2,选择要画图形的类型3,添加一些图形,4,丰富一下图形的信息.ggpl
统计学一直是让医学生头疼的课程,文章中各式各样的统计方法让人云里雾里。举个简单的例子,两组之间的比较,该怎么分析?你肯跟会说用t检验,不过t检验一定是正确的吗?是否方差齐性,是否正态分布,这些都是我们要关心的,如果方差不齐,我们该怎么办?如果有很多分组,我们两两之间必要,也要花费很多的时间。那有没有什么快速、高效、准确的方法,能够让我们快速准确绘制统计检验的图形呢?哈哈,今天我们就来学习一下如何用最快最简单的方式完成统计检验和绘制发表级的图片吧!
R适用于统计分析,绘图的一款编程软件,R属于开源,自由,免费的软件。随着生物信息学的发展,R语言在数据分析和绘制图形上都有着十分重要的优势。尤其是现在大部分科研绘图,都使用R语言来完成的。最近有一位小伙伴要发SCI论文,给我发了3w多条数据,问我可不可以画和下图基本相似的图。大家都知道论文的发表除了实验和数据以外,图片也非常重要。一般图画的越好,那么论文发表的问题也不大。我仔细想了一下自身的实力,觉得可以试一下。那么下面我就用所学R知识不多的情况下教大家绘制这幅SCI配图。
帮助文档 https://github.com/davidsjoberg/ggbump
ggplot2里画折线图的函数是geom_line(),这个函数是按照y值的大小从左往右,如果要实现上图所示折线的方向可以向左拐,可以使用geom_path()函数,比如
频数分布直方图能清楚地显示各组频数分布情况,同时直观展示各组之间频数的差别,是数据分析过程中常用的一种图。
又是一个好久不见,朋友们你们最近还好吗!最近小仙同学刚经历了人生中的一个重要的里程碑——延毕。在预料之中、又如期而至的两个字,小仙心里也是很复杂,可终究跟“毕业”二字沾了边,就当它是好事啦!
过去一个月实验比较忙,很久没有写点东西了,今天要给amina画图,因此学习了一下R语言的基础画图。ide
图形是进行数据的趋势观察和数据展示的一种很好的手段。R语言基本函数, plot函数,属于graphics包。
我们在画图时往往需要添加一些图形标注,例如,x坐标轴的含义,y坐标轴的含义,图例等。标注中的普通的英文符号自不待说,将希腊符号添加在标注中往往是各种画图工具需要特别处理的地方。在LaTeX、Matlab中画出这些希腊符号标注,我已经尝试过,并且使用它们已经有一段日子了,关键是如何R中画出这些希腊符号。
ann:如果ann=FALSE,那么高水平绘图函数会调用函数plot.default使对坐标轴名称、整体图像名称不做任何注解。默认值为TRUE。
让我们快速浏览一下这张图表: 这张可视化数据图(最初用Tableau软件创建 )是如何利用数据可视化来帮助决策者的一个很好的例子。想象一下,如果这些信息通过表格来告诉投资者,你认为你会花多长时间来向他
即便小仙同学决定学习R语言来提升自己作图的“逼格”的时候,心中还有有些疑虑的(嘿嘿,我这么懒,可不愿意做无用功了?)。仔细想了想,貌似又找到了两个学习的理由。 一是R可以帮助我们避免重复劳动,实现“
作者 CDA 数据分析师 数据科学家被认为是21世纪最性感也是最具发展前景的职业,目前有75%左右的数据科学家使用R语言,有35%左右的数据科学家将R语言作为首选统计分析工具。今天,我们来了解一下
本文通过利用回归模型帮助客户对电影的票房数据(以及放映场数,观影人数)进行了研究,确定了决定电影的票房的重要因素(点击文末“阅读原文”获取完整代码数据)。
R语言内置强大的向量运算,是搞数据分析的强大的编程语言,而Python也毫不逊色。今天就试着分析一下考试成绩表中两门科目的相关性。 问题描述: 有一个CSV文件,包含着600名学生在一次考试后的几门课程的考试成绩,想分析一下数学和物理成绩的相关关系。CSV数据样例: num,class,chinese,math,english,physical,chemical,politics,biology,history,geo,pe 158,3,99,120,114,70,49.5,50,49,48.5,49.5,
在生物领域我们常常使用R语言对数据可视化。在对数据可视化的时候,我们需要明确想要展示的信息,从而选择最为合适的图突出该信息。本系列文章将介绍多种基于不同R包的作图方法,希望能够帮助到各位读者。
上一节我们重点介绍了plot()和matplot()两个绘图函数的几个重点参数,他们可以根据使用者的需要进行修改,绘制出自己需要的图形。当需要添加其他元素或者对全局进行设定的时候,我们就需要一些其他的函数来支持了。
第一次使用这个包需要安装,直接运行install.packages("patternplot")命令进行安装
R 作为入门级编程语言,被经常运用在数据整理、数据可视化、以及机器学习中。 本篇文章将主要介绍在R中如何可视化数据 (基础+进阶)。 R绘图的原理 使用R绘图,我们需要在脑海中明确几个必要元素。首先,需要有一张空白的画布, 如下图所示。其次,我们需要根据数据确定X轴、Y轴,以及X轴Y轴的取值范围,因为一个平面直角坐标系在R绘图过程中是必不可少的。接下来,我们就可以选择适当的图表类型(折线图、柱状图、点状图等),并根据数据坐标在坐标系中描绘数据。最后,我们还可以在画布上添加额外信息,例如图表名称,图例等,当然
这张可视化数据图(最初用Tableau软件创建 )是如何利用数据可视化来帮助决策者的一个很好的例子。想象一下,如果这些信息通过表格来告诉投资者,你认为你会花多长时间来向他解释? 如今的世界里,随着数
[]中括号里面的可以是逻辑值判断,可以是具体的值(即下标),可以是函数,可以是向量
但是,准确的说,上面这种数据排布形式只是方便填写和阅读,并不能用于作为R语言的输入数据的排布形式。因此,我们需要按照计算机语言能够理解的思维方式重新整理数据。
本文主要表达如何使用ggplot2绘制线图。线图一般表达的目的是:某个因变量随着自变量改变而变化的趋势。因变量可以为数值型变量或者分类变量。可供选的函数有: geom_line(), geom_step(), geom_path() 举例来说:因变量可以是
plot函数是R语言最基础的函数之一,参数较多,难以记住所有的参数详细用法,这里总结一下,以便查阅。
这里绘制的生存曲线是比较简单的,更详细的生存曲线教程请参见R语言统计与绘图:ggsurvplot()函数绘制Kaplan-Meier生存曲线这篇推文。
今天分享R语言中的柱形图,所有图表语法都基于ggplot2包中的ggplot函数完成 。 其实R语言本身就带有各种作图函数,比如plot、bar、pie等,而且语法非常简单明了,为什么还要用ggplot2这种语法独立性很强、自成体系的作图包来作图呢? 一个例子就能感受到: plot(mpg$cty,mpg$hwy)#R语言内置散点图函数(无需加载任何辅助工具包) ggplot(mpg,aes(cty, hwy)) + geom_point(colour="steelblue")+labs(x = "City
关于此图的讨论已经有一段时间了。我发现一个事实,对此图教程表现出强烈渴望的小伙伴名字后面都有“生态”二字。不管是土壤生态、草地生态还是水生态。非生态的大佬及吃瓜群众也被图形的美学及提供的丰富信息量所吸引。R小白的我也尝试着去还原文中的美图,但是一直进展缓慢。这几天,擂台赛似的相继出来了几种画法:“坐标法”,“python法”(原谅我也不知道用的什么法),“拼接法”,原图的效果大致都出来了:
如果是要更改x轴左右的间距把scale_y_discrete()换成scale_x_discrete()就可以了
这次的教程的重点就是R语言中处理图形的一般方法,包括了图形的创建和保存、图形特征的修改、一些图形处理的通用方法(后面还会重点关注特定类型的图形)以及图形组合的各种方法。
生信分析现在已成为小伙伴们发表文章的标配,里面各种各样的结果展示形式炫目多彩,让人看得如痴如醉,但是让我们自己去画,却不知从何处着手,首先R语言的入门和学习就是许多生信小白的拦路虎。不过,现在许多大神和团队不断推出的在线作图网站却是方便了许多新手作图。
上次分享了小提琴曲线(violin plot)的作图方法,今天小仙同学给大家介绍一下如何用R画出漂亮的密度图(density plot)。
曼哈顿图可以理解成一个x对应多个y的散点图,ggplot2里做这种图的函数是geom_jitter()
最近我们被客户要求撰写关于主成分分析PCA的研究报告,包括一些图形和统计输出。 降维技术之一是主成分分析 (PCA) 算法,该算法将可能相关变量的一组观察值转换为一组线性不相关变量。在本文中,我们将讨论如何通过使用 R编程语言使用主成分分析来减少数据维度分析葡萄酒数据
在新增我们的统计可视化课程的时候,发现了贝叶斯分析,且其可视化结果也是应用非常广泛,本期推文就给大家简单介绍下Python和R语言中用于贝叶斯模型分析的好用的工具。
ggplot2.stripchart是一个易于使用的函数(来自easyGgplot2包),使用ggplot2绘图系统和R软件生成条带图。 条形图也被称为一维散点图(或点图)。 当样本量较小时,这些图比较适用于箱型图。
在这些内容的基础上,我们在这个部分为大家介绍一些实用知识,包括描述工作区结构、图形设备以及它们的参数等问题,还有初级编程和数据输入输出。
大数据文摘作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权 编译|崔浩 校对|高航,姚佳灵 让我们快速浏览一下这张图表: 这张可视化数据图(最初用Tableau软件创建 )是如何利用数据可视化来帮助决策者的一个很好的例子。想象一下,如果这些信息通过表格来告诉投资者,你认为你会花多长时间来向他解释? 如今的世界里,随着数据量的不断增长,很难不用可视化的形式来呈现你数据里的全部信息。虽然有专门的工具,如Tableau, QlikView 和 d3.js,但没有任何东西能代替有很好可视化能力
matplotlib是Python数据可视化库的OG。尽管它已有十多年的历史,但仍然是Python社区中使用最广泛的绘图库。它的设计与MATLAB非常相似,MATLAB是20世纪80年代开发的专有编程语言。
本文作者蒋刘一琦,自嘲是一个有艺术追求的生信狗,毕业于浙江大学生物信息学专业,目前在复旦大学就读研究生,研究方向为宏基因组。
这篇论文数据分析和可视化的部分用到的数据和代码全部放到了github上 https://github.com/karkman/crassphage_project
编译|黄念 校对|丁一 引言 艺术之美根植于其所传达的信息。有时候,现实并非我们所看到或感知到的。达芬奇(Da Vinci)和毕加索(Picasso)等艺术家都通过其具有特定主题的非凡艺术品,试图让人们更加接近现实。 数据科学家并不逊色于艺术家。他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解。更有趣的是,一旦接触到任何可视化的内容、数据时,人类会有更强烈的知觉、认知和交流。 在数据科学中,有多种工具可以进行可视化。在本文中,我展示了使用Python来实现的各种可视化图表。 怎样才能
领取专属 10元无门槛券
手把手带您无忧上云