中医上讲看病四诊法为:望闻问切。而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样;闻:仔细分析数据是否合理;问:针对前两步工作搜集到的问题与业务方交流;切:结合业务方反馈的结果和项目需求进行数据分析。
博客地址:https://www.jianshu.com/u/619b87e54936
数据分布图简介 绘制基本直方图 基于分组的直方图 绘制密度曲线 绘制基本箱线图 往箱线图添加槽口和均值 绘制2D等高线 绘制2D密度图 数据分布图简介 中医上讲看病四诊法为:望闻问切。而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样;闻:仔细分析数据是否合理;问:针对前两步工作搜集到的问题与业务方交流;切:结合业务方反馈的结果和项目需求进行数据分析。 “望”的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的。R语言提供了多种图表对数据分布进行描述
中医上讲看病四诊法为:望闻问切。而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样;闻:仔细分析数据是否合理;问:针对前两步工作搜集到的问题与业务方交流;切:结合业务方反馈的结果和项目需求进行数据分析。
网址:http://www.cnblogs.com/muchen/p/5430536.html
之前的几期推文模仿了来自于论文 Core gut microbial communities are maintained by beneficial interactions and strain
前面给大家讲了☞【R语言】百分比表格删除两行重新计算百分比,有小伙伴对文中的两个堆积柱形图比较感兴趣。那么今天我们就来聊聊这两张图是如何绘制出来了。
今天给大家介绍两款字体,这两款字体是一个喜欢设计的大神学长开发的,专门用作mini图表字体。 而且只要是支持字体显示的设备,几乎都可以用,当然Excel里面也可以用,这里我用R语言来演示如何使用图表字
https://www.bilibili.com/video/BV1B5411W7HU
今天分享R语言中的柱形图,所有图表语法都基于ggplot2包中的ggplot函数完成 。 其实R语言本身就带有各种作图函数,比如plot、bar、pie等,而且语法非常简单明了,为什么还要用ggplot2这种语法独立性很强、自成体系的作图包来作图呢? 一个例子就能感受到: plot(mpg$cty,mpg$hwy)#R语言内置散点图函数(无需加载任何辅助工具包) ggplot(mpg,aes(cty, hwy)) + geom_point(colour="steelblue")+labs(x = "City
编译|黄念 校对|丁一 引言 艺术之美根植于其所传达的信息。有时候,现实并非我们所看到或感知到的。达芬奇(Da Vinci)和毕加索(Picasso)等艺术家都通过其具有特定主题的非凡艺术品,试图让人们更加接近现实。 数据科学家并不逊色于艺术家。他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解。更有趣的是,一旦接触到任何可视化的内容、数据时,人类会有更强烈的知觉、认知和交流。 在数据科学中,有多种工具可以进行可视化。在本文中,我展示了使用Python来实现的各种可视化图表。 怎样才能
本文介绍基于R语言中的readxl包与ggplot2包,读取Excel表格文件数据,并绘制具有多个系列的柱状图、条形图的方法。
最近有人在公众号后台留言问到这个问题,今天的推文介绍一下ggplot2做堆积柱形图并添加误差线的办法 完整代码 ''' 堆积柱形图添加误差线 ''' getwd() library(ggplot2) library(dplyr) library(see) df<-read.csv("penguins.csv") head(df) df %>% na.omit() %>% group_by(species,sex) %>% summarise(mean_value=mean(bill_le
see包是一个R语言可视化工具包,它能为使用者提供漂亮的、出版级的图像展示。 本文中主要介绍see包使用的主要函数:
我是厦门大学的一名大四学生,被@iGuo抓来写关于数据可视化的系列推文,因本人水平实在有限,本系列推文相比CPP别的技术类文章肯定那么高大上和干货满满,还请各位看官海涵。
本文主要表达如何使用ggplot2绘制线图。线图一般表达的目的是:某个因变量随着自变量改变而变化的趋势。因变量可以为数值型变量或者分类变量。可供选的函数有: geom_line(), geom_step(), geom_path() 举例来说:因变量可以是
===============================================
https://www.nature.com/articles/s41588-023-01516-6
首先,简单介绍一下作者,宁海涛是211硕士毕业,先后学习Python进行深度学习模型构建以及可视化展示,当然还包括数据分析、数据处理、数据可视化等技能,此外,还特别擅长于使用R语言进行数据统计和可视化绘制,当然还有一些前端、爬虫等这里就不做解释,总之是一位比较全能的优质作者。从2020年5月一直到现在,已连载超过「185+优质原创文章」。
本公众号名称由趣味数据周刊更名为:数据指象。指象:谓天以景象示意,出自于《汉书》,希望以数据指象为言语,得一类而达之。
在R语言里我们可以利用dotchart(x, labels=, groups=, gcolor=, cex=)函数来绘制点图,参数x是一组数值型向量,labels这个参数则是代表x中每个值的标签,其数据类型也是向量,这两个是基本参数。除此以外,groups参数可以对x进行分组,gcolor指定各个组的颜色,而cex则可以控制标签的尺寸。在这里我们仍将使用R内置的mtcars数据集来演示。
RNA-seq是研究转录组应用最广泛,也最重要的技术之一。RNAseq其分析内容包括序列比对、转录本拼装、表达定量、差异分析、融合基因检测、可变剪接、RNA编辑和突变检测等,具体流程和常用工具如下图所示。通常的分析不一定需要走完全部流程,按需进行,某些步骤可以跳过、简化等。
这里将销售部门的业绩分为一卖业绩和复购业绩进行可视化,并且有意思的是使用到了表情符合字体(emojifont拓展包)。整个可视化下面是可视化的效果:
今天要给大家介绍的Pie chart(饼图),本来是不打算写这个的,因为用Excel画饼图实在是太方便了。本着能少动一下是一下的懒人原则,是不打算用R画的,再说,本小仙不是掌握了R作图大器ggplot2么,实在需要用的时候我就一句ggplot()+geom_pie()不就搞定了。
在一个交流群看到有人问这个图怎么实现,今天的推文我们来介绍一下如何用R预言的ggplot2实现上面这个图。
R基础教程可先阅读:R语言编程基础第一篇:语法基础 1 barplot()函数绘制 数据: Group Count1 Count2 Control 10 8 Drug1 28 13 Drug2 23 14 Drug3 9 18 Drug4 15 6 #读入数据 data = read.table("barplot.txt",header=T) #绘制条形图,仔细喊下面没一行代码都生成一个图,看他们的差别会知道参数是干嘛的。 barplot(data[,2]) barplot(data[,2],nam
今天跟大家分享关于密度曲线图及其美化技巧! 密度曲线图可能平时大家用的不多,不过其实没什么神秘,它的功能于直方图一样,都是用于表达连续型数值变量的分布形态。 案例还是使用之前的关于钻石的那个数据集。
今日心血来潮,看到一幅制作精良的图表,就想使用ggplot2代码实现,虽然不知道该怎么称呼这个图表,但是能顺利做出来也是很有成就感的! 加载数据包 library("ggplot2") library("grid") library("showtext") library("Cairo") font.add("myfont","msyh.ttc") 构造图形数据源 mydata<-data.frame( id=1:13, class=rep_len(1:4, length=13), Label=c("Eve
昨天以最简单的单序列柱形图作为对象详细的讲解了关于套用主题以及图表美化的思路。 今天就我们常用的几种柱形图的衍生图表——簇状柱形图、堆积柱形图、百分比堆积柱形图的美化工作进行讲解。 我们还是以昨天的数据作为演示数据,同时添加两年度数据。 data<-data.frame(Name = c("苹果","谷歌","脸书","亚马逊","腾讯"),Conpany = c("Apple","Google","Facebook","Amozon","Tencent"),Sale2015 = c(5000,3500,2
列线图(Alignment Diagram),又称诺莫图(Nomogram图),它是建立在多因素回归分析的基础上,这里的回归既包括Logistic回归也包括cox回归,通过回归分析将多个预测指标进行整合,然后采用带有刻度的线段,表达预测模型中各个变量之间的相互关系。
AI科技评论消息,近日,kdnuggets做了一个关于数据科学、机器学习语言使用情况的问卷调查,他们分析了954个回答,得出结论——Python已经打败R语言,成为分析、数据科学和机器学习平台中使用频率最高的语言。有关此次问卷更具体的情况如何?AI科技评论将kdnuggets上发表的总结文编译整理如下: 之前我们在kdnuggets上做了这样一个问卷调查,2016、2017两年,在分析、数据科学和机器学习的工作中,你用R语言,还是Python,或两者都用,或选择其他的语言? 通过分析954个回答,我们得出了
今天我们接着讲绘制热图时候的一个小技巧,如何显示样本的类型。我们经常还在文章中看到类似下面这样的热图。会在列的上方用颜色标注样本的类型。这样可以一目了然的看出找到的差异表达基因能否很好的将不同类型的样本区分开。今天我们就来用R代码来实现。
也给大家介绍了如何使用R自带的heatmap函数+gplots的配色方案来绘制热图
最近我们被客户要求撰写关于鸢尾花iris数据集的研究报告,包括一些图形和统计输出。
上次分享了小提琴曲线(violin plot)的作图方法,今天小仙同学给大家介绍一下如何用R画出漂亮的密度图(density plot)。
汽车共享”最早出现于上个世纪四十年代的瑞士,他们发明了“自驾车合作社”,后来日本、英国等国争相效仿,但都未形成规模。而今,共享经济通过互联网达到了一个新的高度,共享汽车项目则乘势如雨后春笋般涌现在全国多个城市,一些人看好,而一些人看衰
原创:黄小仙 今天给大家分享的是Lollipop chart(棒棒糖图)的画法。棒棒糖图的用途跟条形图的用法类似,只是看起来更加美观一些,图表形式更加丰富(数据不够、拿图来凑,啥也不能阻止我优秀 )
之前有人在公众号留言问文章开头这幅图如何实现,下面的B图是折线图加柱形图,相对比较容易实现,上面的A图稍微有点复杂,我想到的办法是拼图,图A可以看成三个热图,然后加一个堆积柱形图,最后将四个图组合到一起。那就按照这个思路试一下看能不能实现。 最初的想法是左侧的颜色条用堆积柱形图来实现,又看了一遍Y叔公众号关于aplot这个包的推文,发现他是用geom_tile()函数实现的,仔细想想还是geom_tile()函数实现起来比较方便。 首先解决昨天的遗留问题:ggplot2画图添加文字内容的时候如何添加下划线
首先,在这里先跟大家说声对不起,技术团队最近一直在做课程开发,本着宁缺毋滥的原则,我们的微信文章一再搁置,在编辑部催了无数遍之后,终于可以把课程放出来给大家了。
ggplot2自从2007年推出以来,成为世界范围内下载最频繁、使用最广泛的R包之一。许多人包括ggplot2的创建人Hadley Wickham将这一成功归功于ggplot2背后的哲学。这个软件包的灵感来源于Leland Wilkinson编写的《图形语法》一书,在此书中将graphs 分解成scales和layers,并将原始数据与表现形式分离开。
贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯
在大概了解了R语言和在自己电脑上安装了Rstudio之后,相信大家对学习使用R语言迫不及待了。接下来,我们会推出一系列的推文来帮助大家由浅入深的学习R语言,保证每一个同学在这系列推文结束的时候都能成为R语言编程的大牛。
方剂药效与剂量的关系中药不传之秘在于剂量中药配伍规律。拓端数据使用数据挖掘技术对海量的在线医院药物复方历史数据进行智能分析,并从中找出药物配伍的规律
作者 CDA 数据分析师 数据科学家被认为是21世纪最性感也是最具发展前景的职业,目前有75%左右的数据科学家使用R语言,有35%左右的数据科学家将R语言作为首选统计分析工具。今天,我们来了解一下
建国70周年大庆即将到来,各行各业都在积极筹备迎接祖国的生日,在这个举国欢腾的时刻,我们决定以一种特殊方式来表达自己对祖国母亲的祝福:一副用R语言绘制的中国地图。
我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数
上一节课我们熟悉了R语言中的各种数据类型,帮大家复习一下,这些数据类型包括了向量(vector)、矩阵(matrix)、数组(array)、数据框(data.frame)和列表(list),还提到了因子(factor)。这些数据类型在我们运用R语言解决实际问题的时候都非常有用,在上节的例子中我们是在R里面直接生成的数据,但是实际数据分析中,如何快速灵活的读取和处理多种格式的外部数据呢?这节课的主要内容,我们就来讲讲R语言中数据的读取。
在一篇论文中,最引人注目的除了标题和摘要,便是嵌于文中的各种图表了。而图形凭借其更为直观的表达效果一直备受学术界青睐,可以说如何用更为美观的图形更恰当、更全面、更精准地展现研究结果,是所有研究者一直在探索的课题。
领取专属 10元无门槛券
手把手带您无忧上云