首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    EfficientDeRain: Learning Pixel-wise Dilation Filtering for High-EfficiencySingle-Image Deraining

    由于未知的降雨模式,单图像去噪相当具有挑战性。现有的方法通常对降雨模型做出特定的假设,这些假设很难涵盖现实世界中的许多不同情况,这使得它们不得不采用复杂的优化或渐进式重建。然而,这严重影响了这些方法在许多效率关键应用中的效率和有效性。为了填补这一空白,在本文中,我们将单图像去噪视为一个通用的图像增强问题,并最初提出了一种无模型的去噪方法,即Ef finicientDeRain,它能够在10ms内(即平均约6ms)处理降雨图像,比最先进的方法(即RCDNet)快80多倍,同时实现类似的去噪效果。我们首先提出了一种新颖的逐像素膨胀滤波器。 特别是,用从核预测网络估计的逐像素核对雨天图像进行滤波,通过该网络可以有效地预测每个像素的合适的多尺度核。然后,为了消除合成数据和真实数据之间的差距,我们进一步提出了一种有效的数据增强方法(即RainMix),该方法有助于训练网络进行真实的雨天图像处理。我们对合成和真实世界的降雨数据集进行了全面评估,以证明我们的方法的有效性和效率。

    03

    ​万字综述 | 图神经网络在时间序列中的应用:预测、分类、填补和异常检测

    时间序列是记录动态系统测量值的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于揭示可用数据中隐含的信息财富至关重要。随着图神经网络(GNNs)的最新进展,基于GNN的时间序列分析方法大幅增加。这些方法可以明确地建模时序和变量间的关系,而传统的和其他基于深度神经网络的方法则难以做到。在这项调查中,我们对图神经网络在时间序列分析中的应用进行了全面回顾(GNN4TS),涵盖了四个基本维度:预测、分类、异常检测和填补。我们的目标是指导设计师和从业者了解、构建应用程序,并推进GNN4TS的研究。首先,我们提供了一个全面的面向任务的GNN4TS分类法。然后,我们介绍和讨论代表性研究成果,并介绍GNN4TS的主流应用。最后,我们全面讨论了潜在的未来研究方向。这项调查首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络在时间序列分析中的基础、实际应用和机遇。

    04
    领券