秦皇岛佰工钢铁有限公司位于京津冀协同发展与振兴东北老工业基地两大国家战略的交汇点河北省秦皇岛市,占地面积1800亩,总资产达38亿元,员工2600余人,是一家集钢铁冶炼、压延加工、发电、贸易、仓储物流等为一体的综合性民营钢铁企业。
本文介绍了如何利用Rust语言和Cargo管理大型游戏服务器的程序架构,实现了游戏服务器的模块化设计,并利用Websocket通信机制实现了跨平台的游戏服务器通信。同时,本文还介绍了一些重要的基础概念和技术,包括Rust语言、Cargo、Websocket、游戏服务器、分布式系统、同步复制、负载均衡、Rust设计模式等。通过本文的学习,读者可以掌握利用Rust和Cargo开发高性能、可扩展、跨平台的游戏服务器的程序架构和技巧。
-北京海特伟业科技有限公司设计文/任洪卓 发布于:2022-05-22 15:58
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
在数据处理领域,数据分析师在数据湖上运行其即席查询。数据湖充当分析和生产环境之间的接口,可防止下游查询影响上游数据引入管道。为了确保数据湖中的数据处理效率,选择合适的存储格式至关重要。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80281643
上一篇详细讲解了如何用Canal和Kafka,将MySQL数据实时全量同步到Greenplum。对照本专题第一篇中图1-1的数据仓库架构,我们已经实现了ETL的实时抽取过程,将数据同步到RDS中。本篇继续介绍如何实现后面的数据装载过程。实现实时数据装载的总体步骤可归纳为:
有赞大数据技术应用的早期,我们使用 Sqoop 作为数据同步工具,满足了 MySQL 与 Hive 之间数据同步的日常开发需求。
TongRDS(简称 RDS)是分布式内存数据缓存中间件,用于高性能内存数据共享与应用支持。RDS为各类应用提供高效、稳定、安全的内存数据处理能力;同时它支持共享内存的搭建弹性伸缩管理;使业务应用无需考虑各种内存的复杂管理。
客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票、一日游、特色体验、当地交通与美食预订服务。覆盖全球100个国家及地区,支持12种语言和41种货币的支付系统,与超过10000家商户合作伙伴紧密合作,为全球旅行者提供10万多种旅行体验预订服务。KLOOK数仓RDS数据同步是一个很典型的互联网电商公司数仓接入层的需求。对于公司数仓,约60%以上的数据直接来源与业务数据库,数据库有很大一部分为托管的AWS RDS-MYSQL 数据库,有超100+数据库/实例。RDS直接通过来的数据通过标准化清洗即作为数仓的ODS层,公司之前使用第三方商业工具进行同步,限制为每隔8小时的数据同步,无法满足公司业务对数据时效性的要求,数据团队在进行调研及一系列poc验证后,最后我们选择Debezium+Kafka+Flink+Hudi的ods层pipeline方案,数据秒级入湖,后续数仓可基于近实时的ODS层做更多的业务场景需求。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80269362
本文通过分析2023年5月15日的腾讯财报数据,从多个方面揭示了腾讯在2023年5月15日所呈现的财务、经营和战略状况。
答:云数据库是部署和虚拟化在云计算环境中的数据库。云数据库是在云计算的大背景下发展起来的一种新兴的共享基础架构的方法,它极大地增强了数据库的存储能力,消除了人员、硬件、软件的重复配置,让软、硬件升级变得更加容易,同时,也虚拟化了许多后端功能。云数据库具有高可扩展性、高可用性、采用多租形式和支持资源有效分发等特点。
系统的数据,就是公司的生命。哪怕是狗屎,我们也要将它冷冻起来冰封以备后用。垃圾的产品设计就比较让人费解,会时不时从冰柜中将屎取出,想要品尝其中残留的味道。
从本篇开始,介绍使用Kettle实现Hadoop数据仓库的ETL过程。我们会引入一个典型的订单业务场景作为示例,说明多维模型及其相关ETL技术在Kettle上的具体实现。本篇首先介绍一个小而典型的销售订单示例,描述业务场景,说明示例中包含的实体和关系,并在MySQL数据库上建立源数据库表并生成初始的数据。我们要在Hive中创建源数据过渡区和数据仓库的表,因此需要了解与Hive创建表相关的技术问题,包括使用Hive建立传统多维数据仓库时,如何选择适当的文件格式,Hive支持哪些表类型,向不同类型的表中装载数据时具有哪些不同特性。我们将以实验的方式对这些问题加以说明。在此基础上,我们就可以编写Hive的HiveQL脚本,建立过渡区和数据仓库中的表。本篇最后会说明日期维度的数据装载方式及其Kettle实现。
最近数据库行业还是发生一些事情,例如:NebulaGraph获得获得数千万美元的A轮融资,Oracle将在AWS支持MySQL HeatWave服务,VLDB 2022在悉尼举行,来自中国多篇成果被接收,等等,查看原文
上两篇里介绍了几种基本的维度表技术,并用示例演示了每种技术的实现过程。本篇说明多维数据仓库中常见的事实表技术。我们将讲述五种基本事实表扩展,分别是周期快照、累积快照、无事实的事实表、迟到的事实和累积度量。和讨论维度表一样,也会从概念开始认识这些技术,继而给出常见的使用场景,最后以销售订单数据仓库为例,给出Kettle实现的作业、转换和测试过程。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51783410
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
为方便阅读、重点呈现,本文对各板块内容进行了精简,需阅读完整版可点击文末【阅读原文】或登录云盘下载:https://pan.baidu.com/s/1h8plZz-amxxOMMWTL2eicQ(提取码:dwqg)
根据文章内容总结摘要。
Halodoc 数据工程已经从传统的数据平台 1.0 发展到使用 LakeHouse 架构的现代数据平台 2.0 的改造。在我们之前的博客中,我们提到了我们如何在 Halodoc 实施 Lakehouse 架构来服务于大规模的分析工作负载。我们提到了平台 2.0 构建过程中的设计注意事项、最佳实践和学习。本博客中我们将详细介绍 Apache Hudi 以及它如何帮助我们构建事务数据湖。我们还将重点介绍在构建Lakehouse时面临的一些挑战,以及我们如何使用 Apache Hudi 克服这些挑战。
本篇重点是针对销售订单示例创建并测试数据装载的Kettle作业和转换。在此之前,先简要介绍数据清洗的概念,并说明如何使用Kettle完成常见的数据清洗工作。由于本示例中Kettle在Hadoop上的ETL实现依赖于Hive,所以之后对Hive做一个概括的介绍,包括它的体系结构、工作流程和优化。最后用完整的的Kettle作业演示如何实现销售订单数据仓库的数据转换与装载。
使用阿里云rds for MySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死。严重影响业务。
当想要对来自事务数据库(如 Postgres 或 MySQL)的数据执行分析时,通常需要通过称为更改数据捕获[4] CDC的过程将此数据引入数据仓库或数据湖等 OLAP 系统。Debezium 是一种流行的工具,它使 CDC 变得简单,其提供了一种通过读取更改日志[5]来捕获数据库中行级更改的方法,通过这种方式 Debezium 可以避免增加数据库上的 CPU 负载,并确保捕获包括删除在内的所有变更。现在 Apache Hudi[6] 提供了 Debezium 源连接器,CDC 引入数据湖比以往任何时候都更容易,因为它具有一些独特的差异化功能[7]。Hudi 可在数据湖上实现高效的更新、合并和删除事务。Hudi 独特地提供了 Merge-On-Read[8] 写入器,与使用 Spark 或 Flink 的典型数据湖写入器相比,该写入器可以显着降低摄取延迟[9]。最后,Apache Hudi 提供增量查询[10],因此在从数据库中捕获更改后可以在所有后续 ETL 管道中以增量方式处理这些更改下游。
如果你使用过 Google 或 YouTube,那么你很可能已经访问过分片数据。分片通过将数据分区存储在多个服务器上,而不是将所有内容放在一个巨大的服务器上,以实现扩展数据库的目的。这篇文章将介绍数据库分片的工作原理、思考如何给你自己的数据库分片,以及其他一些有用的、可以提供帮助的工具,尤其是针对 MySQL 和 Postgres。
Robinhood 的使命是使所有人的金融民主化。Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础。我们有各种数据源——OLTP 数据库、事件流和各种第 3 方数据源。需要快速、可靠、安全和以隐私为中心的数据湖摄取服务来支持各种报告、关键业务管道和仪表板。不仅在数据存储规模和查询方面,也在我们在数据湖支持的用例方面,我们从最初的数据湖版本[1]都取得了很大的进展。在这篇博客中,我们将描述如何使用各种开源工具构建基于变更数据捕获的增量摄取,以将我们核心数据集的数据新鲜延迟从 1 天减少到 15 分钟以下。我们还将描述大批量摄取模型中的局限性,以及在大规模操作增量摄取管道时学到的经验教训。
Growth Hacking这个词在过去一两年开始迅速从硅谷传播到国内,也诞生了一系列专注于企业数据分析业务的明星初创公司,如GrowingIO,神策数据,诸葛IO等。Growth Hacking简单的来说就是用数据驱动的方式来指导产品的迭代改进,以实现用户的快速增长,可以看看上面几家数据分析公司披露的客户就知道它有多流行了: GrowingIO客户:有赞,豆瓣,36Kr等 神策数据客户:秒拍,AcFun,爱鲜蜂,pp租车等 诸葛IO客户:Enjoy,罗辑思维等 我司的一个主要产品是面向中小诊所的运营S
大家好,我是云英负责存储的研发工程师,杨冠军,很高兴今天能在这里跟大家一起讨论分享下Ceph和Ceph在云英的实践。 首先我先介绍下,Ceph是什么,我们为什么选择Ceph? Ceph是最近开源系统中很火的一个项目,基于Sage Weil的一片博士论文发展而来的一个分布式文件系统,可提供PB级,动态可扩展,数据安全可靠的存储服务。Ceph提供分布式存储服务包括:块存储RBD,对象存储RADOSGW和CephFS三种,基本覆盖了绝大部分企业对存储的需求,所以越来越多企业加入到使用Ceph的行列。在国内也有越来
日前,第11届PostgreSQL中国技术大会圆满落幕,大会上腾讯云多位顶级技术达人携手亮相,分别对腾讯云PostgreSQL系列产品技术亮点和创新实践案例进行了深入解读,针对TDSQL-C PostreSQL高可用特性、TDSQL-A发展历程、技术架构等做出了详细介绍。 会上腾讯云数据库开源产品TDSQL PostgreSQL版(开源代号Tbase)再次公布升级:分区表能力增强,分区剪枝性能提升30%,分布区表关联查询性能(Join)提升超十倍。此外,异地多活易用性增强、分布式死锁自动检测并解锁功能上线
作者 | stone-no1 来源 | https://blog.csdn.net/weixin_38071106/article/details/88547660 Canal 定位:基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql。 原理: canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议 mysql master收到dump请求,开始推送binary log给slave(也就是canal) canal解
本期带来的是题目是《管理你元组的坟地》,带来这个话题的是Chelsea,她服务于一家互联网的金融公司,负责以下的工作范围,参加下图,在此之前他是一个后端的开发工程师,现在他是数据管理团队的Team leader
答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。
本文延续上一篇文章 云数据库MySQL导入云数据仓库PostgreSQL最佳实践,继续介绍云数据库MySQL导入云数据仓库PostgreSQL的使用问题。其中描述的问题及解决方法同样适用于 腾讯云 云数据仓库 PostgreSQL(CDWPG)。
在不那么遥远的旧 IT 时代,有这样一个段子——假如把数据库们”聚在一起“开会”。 Oracle: 我们需要企业级数据库。 MySQL: Oracle 不开源。 PostgreSQL: MySQL 的
数据仓库的数据体系严格、治理容易,业务规模越大,ROI 越高;数据湖的数据种类丰富,治理困难,业务规模越大,ROI 越低,但胜在灵活。
时序数据库厂商「格睿云Greptime」已于近期完成天使轮融资。据介绍,本轮融资金额在数百万美金级别,由耀途资本领投,九合创投跟投。Greptime成立于2022年4月,是一家时序数据库厂商。公司CEO 庄晓丹曾在蚂蚁集团带领智能监控团队自研超大规模时序数据平台并实践 AIOps 智能运维,CTO 孙宁及技术 VP 冯家纯分别来自滴滴与蚂蚁集团。
https://www.notion.so/blog/sharding-postgres-at-notion
最近在实现 MetaProtocol 时阅读了 Envoy 相关的一些源码。这里将一些重要流程的时序图记录下来,以备后续查看。
云数据库的RDS 产品,在传统开源的系列里面大致可以选择的是 POSTGRESQL 和 MYSQL 两种,诚然在RDS 的里面大部分产品最终的选择还是MYSQL ,今天不想讨论产品的量,而是想讨论以下产品的难度,RDS 产品在 POSTGRESQL 和 MYSQL 两种产品的难度问题。
来源:https://www.jianshu.com/p/336f682e4b91
有一个Spring Cloud的jar包,文件名为:RDS.jar。必须要jdk1.8版本,需要部署在 Centos 7.5的服务器上面,最好能设置开机自启动!
在一个风和日丽的下午,姜同学正在研究动态规划算法,突然被临时传递了一个需求,大致就是测试的同学想要做自动化测试。具体的细节略过,姜同学认为需求还比较合理,可以做。要求如下: ● 无损备份线上数据库到文件 ● 支持表级备份 ● 支持字段脱敏 ● 支持版本管理 ● 支持一键还原
MySQL性能压测或者基准测试看起来很简单,使用sysbench,tpcc工具跑跑拿到数据就好,其实压测是一个技术活儿,尤其是涉及到性能对比的测试,因为不同场景/不同厂商的产品的参数设置不同,测试的结果也不一样。如果不阐明具体的参数配置差异,直接给出压测结果可能给其他人带来误导。
云数据库rds是什么?这个问题是很多人都想了解的问题,因为大多数人对于云数据库rds并不是很了解,因为大多数人还停留在自建数据库这种意识上,并没有真正地了解到云数据库的优势,以及云数据库未来的发展趋势,也连带着大家对于云数据库RDS不是很了解。那么接下来就为大家简单说一下云数据库rds是什么?有哪些优势?
云数据库rds属于关系型数据库,是比较稳定可靠,可弹性伸缩的在线数据库服务,支持多种引擎,可以提供备份,恢复,迁徙等方面的服务,所以在现在的很多场景中都有很好的应用。那么云数据库rds怎么用?云数据库RDS的优势是什么?
简介和安装 redis简介: 开源高性能key-value存储;采用内存中(in-memory)数据集的方式,也可以采用磁盘存储方式(前者性能高,但数据可能丢失,后者正好相反) 支持字符串(strings)、哈希(hashes)、列表(lists)、集合(sets)和 有序集合(sorted sets)等;支持对复杂数据结构的高速操作。 特性多,支持主从同步、pub/sub等 支持多种客户端(http://redis.io/clients) ... 注:应用场景没有提到,暂时没有太多实际体会,不瞎说,
是允许我们处理客户端数据的一系列服务的统称, 主要可以为公司节约计算机的硬件成本.
单细胞初级8讲和高级分析8讲 单细胞分析十八般武艺1:harmony 单细胞分析十八般武艺2:LIGER 单细胞分析十八般武艺3:fastMNN 单细胞分析十八般武艺4:velocyto
https://mp.weixin.qq.com/s/UsDC-t1j7NHaLTnI6xCATQ
领取专属 10元无门槛券
手把手带您无忧上云