首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(三)

    三、维度子集         有些需求不需要最细节的数据。例如更想要某个月而不是某天的记录。再比如相对于全部的销售数据,可能对某些特定状态的数据更感兴趣等。这些特定维度包含在从细节维度选择的行中,所以叫维度子集。维度子集比细节维度的数据少,因此更易使用,查询也更快。         本节中将准备两个特定维度,它们均取自现有的维度:月份维度(日期维度的子集),Pennsylvania州客户维度(客户维度的子集)。 1. 建立月份维度表         执行下面的脚本建立月份维度表。注意月份维度不包含promo_ind列,该列不适用月层次上,因为一个月中可能有多个促销期,而且并不是一个月中的每一天都是促销期。促销标记适用于天这个层次。

    02

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术

    三、维度子集 有些需求不需要最细节的数据。例如更想要某个月而不是某天的记录。再比如相对于全部的销售数据,可能对某些特定状态的数据更感兴趣等。这些特定维度包含在从细节维度选择的行中,所以叫维度子集。维度子集比细节维度的数据少,因此更易使用,查询也更快。 本节中将准备两个特定维度,它们均取自现有的维度:月份维度(日期维度的子集),Pennsylvania州客户维度(客户维度的子集)。 1. 建立月份维度表 执行下面的脚本建立月份维度表。注意月份维度不包含promo_ind列,该列不适用月层次上,因为一个月中可能有多个促销期,而且并不是一个月中的每一天都是促销期。促销标记适用于天这个层次。

    01

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(九)

    九、退化维度 本节讨论一种称为退化维度的技术。该技术减少维度的数量,简化维度数据仓库模式。简单的模式比复杂的更容易理解,也有更好的查询性能。当一个维度没有数据仓库需要的任何数据时就可以退化此维度,此时需要把退化维度的相关数据迁移到事实表中,然后删除退化的维度。 1. 退化订单维度 本小节说明如何退化订单维度,包括对数据仓库模式和定期装载脚本的修改。使用维度退化技术时你首先要识别数据,分析从来不用的数据列。例如,订单维度的order_number列就可能是这样的一列。但如果用户想看事务的细节,还需要订单号。因此,在退化订单维度前,要把订单号迁移到sales_order_fact表。下图显示了迁移后的模式。

    02

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(十三)

    十三、无事实的事实表 本节讨论一种技术,用来处理源数据中没有度量的需求。例如,产品源数据不包含产品数量信息,如果系统需要得到产品的数量,很显然不能简单地从数据仓库中直接得到。这时就要用到无事实的事实表技术。使用此技术可以通过持续跟踪产品的发布来计算产品的数量。可以创建一个只有产品(计什么数)和日期(什么时候计数)维度代理键的事实表。之所以叫做无事实的事实表是因为表本身并没有度量。 1. 产品发布的无事实事实表 本小节说明如何实现一个产品发布的无事实事实表,包括新增和初始装载product_count_fact表。下图显示了跟踪产品发布数量的数据仓库模式(只显示与product_count_fact表有关的表)。

    02

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(十一)

    十一、多重星型模式 从“进阶技术”开始,已经通过增加列和表扩展了数据仓库,在进阶技术(五) “快照”里增加了第二个事实表,month_end_sales_order_fact表。这之后数据仓库模式就有了两个事实表(第一个是在开始建立数据仓库时创建的sales_order_fact表)。有了这两个事实表的数据仓库就是一个标准的双星型模式。 本节将在现有的维度数据仓库上再增加一个新的星型结构。与现有的与销售关联的星型结构不同,新的星型结构关注的是产品业务领域。新的星型结构有一个事实表和一个维度表,用于存储数据仓库中的产品数据。 1. 一个新的星型模式 下图显示了扩展后的数据仓库模式。

    01

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术

    五、快照 前面实验说明了处理维度的扩展。本节讨论两种事实表的扩展技术。 有些用户,尤其是管理者,经常要看某个特定时间点的数据。也就是说,他们需要数据的快照。周期快照和累积快照是两种常用的事实表扩展技术。 周期快照是在一个给定的时间对事实表进行一段时期的总计。例如,一个月销售订单周期快照汇总每个月底时总的销售订单金额。 累积快照用于跟踪事实表的变化。例如,数据仓库可能需要累积(存储)销售订单从下订单的时间开始,到订单中的商品被打包、运输和到达的各阶段的时间点数据来跟踪订单生命周期的进展情况。用户可能要取得在某个给定时间点,销售订单处理状态的累积快照。 下面说明周期快照和累积快照的细节问题。 1. 周期快照 下面以销售订单的月底汇总为例说明如何实现一个周期快照。 首先需要添加一个新的事实表。下图中的模式显示了一个名为month_end_sales_order_fact的新事实表。

    02

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(五)

    五、快照         前面实验说明了处理维度的扩展。本节讨论两种事实表的扩展技术。         有些用户,尤其是管理者,经常要看某个特定时间点的数据。也就是说,他们需要数据的快照。周期快照和累积快照是两种常用的事实表扩展技术。         周期快照是在一个给定的时间对事实表进行一段时期的总计。例如,一个月销售订单周期快照汇总每个月底时总的销售订单金额。         累积快照用于跟踪事实表的变化。例如,数据仓库可能需要累积(存储)销售订单从下订单的时间开始,到订单中的商品被打包、运输和到达的各阶段的时间点数据来跟踪订单生命周期的进展情况。用户可能要取得在某个给定时间点,销售订单处理状态的累积快照。         下面说明周期快照和累积快照的细节问题。 1. 周期快照         下面以销售订单的月底汇总为例说明如何实现一个周期快照。         首先需要添加一个新的事实表。下图中的模式显示了一个名为month_end_sales_order_fact的新事实表。

    02
    领券