首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(九)

    九、退化维度 本节讨论一种称为退化维度的技术。该技术减少维度的数量,简化维度数据仓库模式。简单的模式比复杂的更容易理解,也有更好的查询性能。当一个维度没有数据仓库需要的任何数据时就可以退化此维度,此时需要把退化维度的相关数据迁移到事实表中,然后删除退化的维度。 1. 退化订单维度 本小节说明如何退化订单维度,包括对数据仓库模式和定期装载脚本的修改。使用维度退化技术时你首先要识别数据,分析从来不用的数据列。例如,订单维度的order_number列就可能是这样的一列。但如果用户想看事务的细节,还需要订单号。因此,在退化订单维度前,要把订单号迁移到sales_order_fact表。下图显示了迁移后的模式。

    02

    Kettle构建Hadoop ETL实践(四):建立ETL示例模型

    从本篇开始,介绍使用Kettle实现Hadoop数据仓库的ETL过程。我们会引入一个典型的订单业务场景作为示例,说明多维模型及其相关ETL技术在Kettle上的具体实现。本篇首先介绍一个小而典型的销售订单示例,描述业务场景,说明示例中包含的实体和关系,并在MySQL数据库上建立源数据库表并生成初始的数据。我们要在Hive中创建源数据过渡区和数据仓库的表,因此需要了解与Hive创建表相关的技术问题,包括使用Hive建立传统多维数据仓库时,如何选择适当的文件格式,Hive支持哪些表类型,向不同类型的表中装载数据时具有哪些不同特性。我们将以实验的方式对这些问题加以说明。在此基础上,我们就可以编写Hive的HiveQL脚本,建立过渡区和数据仓库中的表。本篇最后会说明日期维度的数据装载方式及其Kettle实现。

    01

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术

    五、快照 前面实验说明了处理维度的扩展。本节讨论两种事实表的扩展技术。 有些用户,尤其是管理者,经常要看某个特定时间点的数据。也就是说,他们需要数据的快照。周期快照和累积快照是两种常用的事实表扩展技术。 周期快照是在一个给定的时间对事实表进行一段时期的总计。例如,一个月销售订单周期快照汇总每个月底时总的销售订单金额。 累积快照用于跟踪事实表的变化。例如,数据仓库可能需要累积(存储)销售订单从下订单的时间开始,到订单中的商品被打包、运输和到达的各阶段的时间点数据来跟踪订单生命周期的进展情况。用户可能要取得在某个给定时间点,销售订单处理状态的累积快照。 下面说明周期快照和累积快照的细节问题。 1. 周期快照 下面以销售订单的月底汇总为例说明如何实现一个周期快照。 首先需要添加一个新的事实表。下图中的模式显示了一个名为month_end_sales_order_fact的新事实表。

    02

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(五)

    五、快照         前面实验说明了处理维度的扩展。本节讨论两种事实表的扩展技术。         有些用户,尤其是管理者,经常要看某个特定时间点的数据。也就是说,他们需要数据的快照。周期快照和累积快照是两种常用的事实表扩展技术。         周期快照是在一个给定的时间对事实表进行一段时期的总计。例如,一个月销售订单周期快照汇总每个月底时总的销售订单金额。         累积快照用于跟踪事实表的变化。例如,数据仓库可能需要累积(存储)销售订单从下订单的时间开始,到订单中的商品被打包、运输和到达的各阶段的时间点数据来跟踪订单生命周期的进展情况。用户可能要取得在某个给定时间点,销售订单处理状态的累积快照。         下面说明周期快照和累积快照的细节问题。 1. 周期快照         下面以销售订单的月底汇总为例说明如何实现一个周期快照。         首先需要添加一个新的事实表。下图中的模式显示了一个名为month_end_sales_order_fact的新事实表。

    02
    领券