首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

02.数据导入&清理1.导入csv文件2.导入文本文件3.导入EXCEL文件:4.解决中文路径异常问题5.导出csv文件6.重复值处理7.缺失值处理8.空格值处理

1.导入csv文件 read_csv(file, encoding) #如导入中文:encoding='utf-8' from pandas import read_csv df = read_csv(...列名,默认为文件第一行 sep 分隔符,默认为空,表示默认导入为一列 encoding 设置文件编码 from pandas import read_table df = read_table(...文件: read_excel(fileName, sheetname, names) #如导入中文:encoding='utf-8' 用pandas读取Excel文件时, 如提示:ModuleNotFoundError...conda list xlrd 参数 注释 fileName 文件路径 sheetname 表名 names 列名,默认为文件中的第一行 from pandas import read_excel df...数据补齐 删除对应缺失行 不处理 from pandas import read_csv df = read_csv( '/users/bakufu/desktop/4.4/data.csv

1.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python从0到100(二十二):用Python读写CSV文件

    CSV文件的纯文本特性使其与操作系统和编程语言无关,大多数编程语言都提供了处理CSV文件的功能,使其在数据处理和科学领域中极为流行。...以下是实现的示例代码:import csvimport random# 打开文件用于写入,'w'模式表示写入,如果文件不存在则创建with open('scores.csv', 'w', newline...文件内容示例:csv.writer函数还允许我们通过dialect参数指定CSV的方言,默认为excel。...四、小结在Python数据分析领域,pandas库是一个强大的工具。它提供了read_csv和to_csv函数,用于简化CSV文件的读写操作。...read_csv函数可以将CSV数据读取为DataFrame对象,而DataFrame是pandas中用于数据处理的核心数据结构,它包含了丰富的数据处理功能,如数据清洗、转换和聚合等。

    34310

    Pandas vs Spark:数据读取篇

    导读 按照前文所述,本篇开始Pandas和Spark常用数据处理方法对比系列。数据处理的第一个环节当然是数据读取,所以本文就围绕两个框架常用的数据读取方法做以介绍和对比。...csv文件,而后再用read_csv获取。...这一转储的过程目的有二:一是提高读取速度,二是降低数据读取过程中的运行内存占用(实测同样的数据转储为csv文件后再读取,内存占用会更低一些); read_excel:其实也是对xlrd库的二次封装,用来读取...至于数据是如何到剪切板中的,那方式可能就多种多样了,比如从数据库中复制、从excel或者csv文件中复制,进而可以方便的用于读取小型的结构化数据,而不用大费周章的连接数据库或者找到文件路径!...(nrows)的数据,就是这个小技巧使得曾经小内存的我也能得以处理大数据,着实欣喜!

    1.9K30

    关于数据导入,教你几招

    工作中也可能遇到各种不同的数据导入需求,本篇文章主要分享下数据导入相关的小技巧,希望你能学到几招。 1.弄清需求是关键 在进行数据导入前,我们首先要清楚想要做什么,要达到什么效果。...最好也要清楚导入的数据量有多大,这样对导入时间也有个评估。...其次,对要导入的文件内容也要有大概了解,比如现在有一个 sql 脚本需要执行,那么你要先看下文件内容,是否存在建表语句、若原表存在该怎么处理、数据冲突又要怎么处理等等,这些都要有个预估。...导入 Excel 或 CSV 文件 有时候我们也需要将 Excel 表导入数据库中,相对于 sql 文件,导入 Excel 文件显得更加复杂些,因为 sql 文件中的 insert 语句是数据库能直接识别的...不过,使用 Navicat 导入 Excel 文件只适用于数据量比较小的情况,如果数据量比较大且字段比较复杂的情况下,那就要进行改造处理了,比如可以使用 LOAD DATA 或者借助程序脚本进行处理后再导入

    75810

    python数据分析——数据分析的数据的导入和导出

    在数据导入阶段,首先要确保数据的来源可靠、格式统一,并且能够满足分析需求。这通常涉及到数据清洗和预处理的工作,比如去除重复数据、处理缺失值、转换数据类型等,以确保数据的完整性和一致性。...read_csv方法中的sep参数表示要导入的csv文件的分隔符,默认值是半角逗号。encoding参数用来指定CSV文件的编码,常用的有utf-8和gbk。...在该例中,首先通过pandas库的read_csv方法导入sales.csv文件的前10行数据,然后使用pandas库的to_csv方法将导入的数据输出为sales_new.csv文件。...2.2 xlsx格式数据输出 【例】对于上一小节中的问题,如销售文件格式为sales.xlsx文件,这种情况下该如何处理?...指缺失数据的表示方式。 columes:序列,可选参数,要编辑的列。 header:布尔型或字符串列表,默认值为True。如果给定字符串列表,则表示它是列名称的别名。

    18710

    使用pandas进行文件读写

    pandas是数据分析的利器,既然是处理数据,首先要做的当然是从文件中将数据读取进来。pandas支持读取非常多类型的文件,示意如下 ?...在日常开发中,最经典的使用场景就是处理csv,tsv文本文件和excel文件了。...针对csv这种逗号分隔的特定格式,也提供了read_csv函数来进行处理,读取csv文件的用法如下 >>> import pandas as pd >>> a = pd.read_csv('test.csv...Excel文件读写 pandas对xlrd, xlwt模块进行了封装,提供了简洁的接口来处理excel文件,支持xls和xlsx等格式的文件,读取excel文件的基本用法如下 >>> pd.read_excel...('test.xlsx') pandas的文件读取函数中,大部分的参数都是共享的,比如header, index_col等参数,在read_excel函数中,上文中提到的read_csv的几个参数也同样适用

    2.2K10

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型...Pandas 擅长处理的类型如下所示: 容易处理浮点数据和非浮点数据中的 缺失数据(用 NaN 表示); 大小可调整性: 可以从 DataFrame 或者更高维度的对象中插入或者是删除列; 显式数据可自动对齐...; 更加灵活地重塑、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件、数据库中加在数据,...read_csv(nrows=n) 大多数人都会犯的一个错误是,在不需要.csv 文件的情况下仍会完整地读取它。...如果一个未知的.csv 文件有 10GB,那么读取整个.csv 文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv 文件中导入几行,之后根据需要继续导入。

    6.7K20

    python数据科学系列:pandas入门详细教程

    考虑series和dataframe兼具numpy数组和字典的特性,那么就不难理解二者的以下属性: ndim/shape/dtypes/size/T,分别表示了数据的维数、形状、数据类型和元素个数以及转置结果...pandas支持大部分的主流文件格式进行数据读写,常用格式及接口为: 文本文件,主要包括csv和txt两种等,相应接口为read_csv()和to_csv(),分别用于读写数据 Excel文件,包括xls...和xlsx两种格式均得到支持,底层是调用了xlwt和xlrd进行excel文件操作,相应接口为read_excel()和to_excel() SQL文件,支持大部分主流关系型数据库,例如MySQL,需要相应的数据库模块支持...3 数据转换 前文提到,在处理特定值时可用replace对每个元素执行相同的操作,然而replace一般仅能用于简单的替换操作,所以pandas还提供了更为强大的数据转换方法 map,适用于series...apply,既适用于series对象也适用于dataframe对象,但对二者处理的粒度是不一样的:apply应用于series时是逐元素执行函数操作;apply应用于dataframe时是逐行或者逐列执行函数操作

    15.1K21

    NumPy、Pandas中若干高效函数!

    Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如SQL表或Excel表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型); 其他任意形式的统计数据集...Pandas 擅长处理的类型如下所示: 容易处理浮点数据和非浮点数据中的 缺失数据(用 NaN 表示); 大小可调整性: 可以从DataFrame或者更高维度的对象中插入或者是删除列; 显式数据可自动对齐...、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的IO工具,用于从平面文件 (CSV 和 delimited)、Excel文件、数据库中加在数据,以及从HDF5格式中保存...read_csv(nrows=n) 大多数人都会犯的一个错误是,在不需要.csv文件的情况下仍会完整地读取它。...如果一个未知的.csv文件有10GB,那么读取整个.csv文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv文件中导入几行,之后根据需要继续导入。

    6.6K20

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型...Pandas 擅长处理的类型如下所示: 容易处理浮点数据和非浮点数据中的 缺失数据(用 NaN 表示); 大小可调整性: 可以从 DataFrame 或者更高维度的对象中插入或者是删除列; 显式数据可自动对齐...; 更加灵活地重塑、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件、数据库中加在数据,...read_csv(nrows=n) 大多数人都会犯的一个错误是,在不需要.csv 文件的情况下仍会完整地读取它。...如果一个未知的.csv 文件有 10GB,那么读取整个.csv 文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv 文件中导入几行,之后根据需要继续导入。

    7.5K30

    12 种高效 Numpy 和 Pandas 函数为你加速分析

    Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型...Pandas 擅长处理的类型如下所示: 容易处理浮点数据和非浮点数据中的 缺失数据(用 NaN 表示); 大小可调整性: 可以从 DataFrame 或者更高维度的对象中插入或者是删除列; 显式数据可自动对齐...; 更加灵活地重塑、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件、数据库中加在数据,...read_csv(nrows=n) 大多数人都会犯的一个错误是,在不需要.csv 文件的情况下仍会完整地读取它。...如果一个未知的.csv 文件有 10GB,那么读取整个.csv 文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv 文件中导入几行,之后根据需要继续导入。

    6.3K10

    Pandas数据应用:机器学习预处理

    数据加载与初步检查1.1 数据加载在开始任何预处理之前,首先需要将数据加载到Pandas DataFrame中。Pandas支持多种文件格式,如CSV、Excel、JSON等。...最常用的是read_csv()函数来读取CSV文件。...# 查看前几行数据print(df.head())# 检查数据的基本信息print(df.info())# 获取数值列的统计摘要print(df.describe())常见问题:文件路径错误导致无法找到文件...解决方案:标准化适用于特征分布接近正态分布的情况;归一化适用于特征分布不规则或需要保持原始范围的情况。对于所有数值特征,建议统一进行标准化或归一化处理,以消除尺度差异的影响。5....Label Encoding仅适用于有序分类变量,对于无序分类变量应优先使用One-Hot编码。结语通过以上步骤,我们可以有效地使用Pandas进行机器学习预处理。

    22110

    【python数据分析】Pandas数据载入

    Pandas库将外部数据转换为DataFrame数据格式,处理完成后再存储到相应的外部文件中。...read_csv默认为“,”,read_table默认为制表符“\t”,如果分隔符指定错误,在读取数据的时候,每一行数据将连成一片 header 接收int或sequence,表示将某行数据作为列名,默认为...name:表示数据读进来之后的数据列的列名 4.文本文件的存储 文本文件的存储和读取类似,结构化数据可以通过pandas中的to_csv函数实现以CSV文件格式存储文件。...Pandas读写Excel文件 参数名称 说明 io 接收string,表示文件路径,无默认 sheetname 接收string、int,代表excel表内数据的分表位置,默认为0 header 接收...') #也可以直接利用: frame= pd.read_ _excel('example/ex1.xlsx', 'Sheet1') 8.Excel文件的存储 将文件存储为Excel文件,可使用to_excel

    36120

    在剪贴板上读取写入数据,太方便了吧!

    说起处理数据,就离不开导入导出,而我们使用Pandas时候最常用的就是read_excel、read_csv了。...不过我们有时候只想用一些“小数据”来验证一些问题/新知识点,那么为此还要创建一个一个excel、csv文件,就有点大费周章了。 今天小五要给大家介绍一种轻便的方法——在剪贴板上读取/写入数据。...另外,read_excel、read_csv的参数在read_clipboard()中同样也可以使用。...与导入数据对应,同样也可以把数据导出到excel文件、csv文件、json、甚至剪贴板上 ↓ 将数据写入剪贴板 还是先看官方简介 ?...2、 False :将对象的字符串表示形式写入剪贴板。 sep :str,默认'\t'字段定界符。 \kwargs这些参数将传递到DataFrame.to_csv。 还是动图演示比较直观 ?

    2.6K20

    【数据处理包Pandas】数据载入与预处理

    目录 一、数据载入 二、数据清洗 (一)Pandas中缺失值的表示 (二)与缺失值判断和处理相关的方法 三、连续特征离散化 四、哑变量处理 准备工作 导入 NumPy 库和 Pandas 库。...Pandas 库将外部数据转换为 DataFrame 数据格式,处理完成后再存储到相应的外部文件中。 1、读 / 写文本文件 文本文件是一种由若干行字符构成的计算机文件,它是一种典型的顺序文件。...read_csv默认为 “,”,read_table默认为制表符 “\t”,如果分隔符指定错误,在读取数据的时候,每一行数据将连成一片 header 接收int或sequence,表示将某行数据作为列名...read_excel常用参数及其说明: 参数名称 说明 io 接收string,表示文件路径,无默认 sheetname 接收string、int,代表excel表内数据的分表位置,默认为0 header...,数据格式为values),默认为None 将文件存储为 Excel 文件,可使用to_excel方法。

    12310
    领券