首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图像处理-Retinex图像增强

图像处理_Retinex图像增强 单尺度SSR (Single Scale Retinex) 图像S(x,y)分解为两个不同的图像:反射图像R(x,y),入射图像L(x,y) 图像可以看做是入射图像和反射图像构成...多尺度MSR (Multi-Scale Retinex) MSR是在SSR基础上发展来的,优点是可以同时保持图像高保真度与对图像的动态范围进行压缩的同时,MSR也可实现色彩增强、颜色恒常性、局部动态范围压缩...、全局动态范围压缩,也可以用于X光图像增强。...w2=w3=\frac13 缺点:边缘锐化不足,阴影边界突兀,部分颜色发生扭曲,纹理不清晰,高光区域细节没有得到明显改善,对高光区域敏感度小 带颜色恢复的MSR方法MSRCR (Multi-Scale Retinex...with Color Restoration) SSR和MSR普遍都存在明显的偏色问题 MSRCR在MSR的基础上,加入了色彩恢复因子C来调节由于图像局部区域对比度增强而导致颜色失真的缺陷。

4.2K10

Retinex图像增强算法代码

utm_source=tuicool http://blog.csdn.net/carson2005/article/details/9502053 Retinex理论 Retinex理论始于Land和...Land的Retinex模型是建立在以下的基础之上的: 一、真实世界是无颜色的,我们所感知的颜色是光与物质的相互作用的结果。...Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex...(sum+i*width+j-1)-*(sum+(i-1)*width+j-1)+*(pCur+i*width+j); //卷积计算 } } return; } // // 局部非线性对比度增强...(sum+i*width+j-1)-*(sum+(i-1)*width+j-1)+*(pCur+i*width+j); //卷积计算 } } return; } // // 局部非线性对比度增强

86030
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV中基于Retinex图像增强实现

    美国物理学家埃德温∙兰德(Edwin Land) 在 1971 年提出一种被称为色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。...根据 Retinex 理论,它会将一幅给定的图像 S(x,y) 分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像 L(x,y)。可以表示为: ? 其原理如下所示: ?...人眼得到的图像数据取决于入射光和物体表面对入射光的反射。Retinex理论就是通过图像S得到物体的反射性质R。所以实际上Retinex方法去除了入射光 L的性质最终得到了物体原本该有的样子。...Retinex图像增强处理步骤如下: 利用取对数的方法将照射光分量和反射光分量分离: ?...在对数域中,用原图像减去低通滤波图像,得到高频增强图像G(x,y)。 ? 对G(x,y)取反对数,得到增强后的图像: ? 对R(x,y)做对比度增强,得到最终的结果图像

    2.3K21

    图像增强算法Retinex原理与实现详解

    Retinex是一种经典的图像增强算法,它通过对图像进行多尺度高斯模糊处理和颜色恢复操作来改善图像的视觉效果。...2.2 多尺度Retinex 多尺度Retinex是在单尺度Retinex的基础上进一步改进的算法,它通过对不同尺度下的图像进行单尺度Retinex增强,并将结果累加求平均得到最终的增强图像。...循环遍历尺度列表中的每个标准差sigma,调用单尺度Retinex算法对图像进行增强,并将结果逐步累加。 将累加后的图像除以尺度列表的长度,得到最终的增强图像。...具体步骤如下: 将输入图像转换为浮点数类型,并加上1.0,避免出现除零错误。 调用多尺度Retinex算法对图像进行增强,得到增强后的图像。...main 函数:主函数,在这里读取输入图像,并设定参数,然后调用 retinex_process 函数进行图像增强。 在窗口中显示原始图像增强后的图像,并保存增强后的图像到文件。

    1.9K10

    关于Retinex图像增强算法的一些新学习。

    之前在我的 带色彩恢复的多尺度视网膜增强算法(MSRCR)的原理、实现及应用 一文中已经较为详细的描述了Multiscale Retinex的基本原理和应用,这里就不再做过多的说明。...第四种,就是GIMP的Retinex算法,这个可详见 带色彩恢复的多尺度视网膜增强算法(MSRCR)的原理、实现及应用 一文的描述。   ...对于一些原始图像HUE较为合理的图,如果用经典的MSRCR算法,会导致处理后的图容易偏色,上述论文提出了对图像的Intensity数据进行Retinex处理,然后再把数据根据原始的RGB的比例映射到每个通道...,这样就能在保留原始颜色分布的基础上增强图像,文章中称其为MSRCP。   ...我自己做了5种算法的比较,分别是:       MSRCRGIMP    -    Gimp内嵌的Retinex增强算法       MSRCRStandard  -    按照《A Multiscale

    2.1K60

    基于直方图的图像增强算法(HE、CLAHE、Retinex)之(一)

    例如,图像增强中利用直方图来调整图像的对比度、有人利用直方图来进行大规模无损数据隐藏、还有人利用梯度直方图HOG来构建图像特征进而实现目标检测。...当然,其实我还不得不感叹,如果仅仅是作为图像算法研究之用,Matlab确实非常好用。 首先读入图像,并将其转化为灰度图。然后提取图像的长和宽。...当然,上述讨论的是灰度图像的直方图均衡。对于彩色图像而言,你可能会想到分别对R、G、B三个分量来做处理,这也确实是一种方法。但有些时候,这样做很有可能导致结果图像色彩失真。...因此有人建议将RGB空间转换为HSV之后,对V分量进行直方图均衡处理以保存图像色彩不失真。下面我们来做一些对比实验。待处理图像是标准的图像处理测试用图couple图,如下所示。 ?...如果你是图像处理的同道中人,欢迎加入图像处理学习群(529549320)。

    4.6K10

    基于色彩恒常( color constancy)特性的Frankle-McCann Retinex图像增强

    (视网膜皮层)模型,并在符合人眼的颜色恒常性理论前提下,提出了基于Retinex图像增强算法。...由于Retinex算法具有高动态范围压缩、高色彩保真度和良好的局部细节增强等特点,引起了大量的国外学者的兴趣。为准确估计亮度分量,选取计算路径常见有一维和二维的区别。...早期,Land提出选取随机路径,并对路径所经过的像素进行累加计算亮度,这种方法的缺陷在于当前像素点的亮度和随机路径上的像素亮度有关和其领域周围的像素亮度几乎无关,使得增强后的图像出现亮度不连续的现象。...随后出现了两种迭代分段线性路径,即McCann99 Retinex 和Frankle-McCann Retinex,相比随机路径的Retinex而言,他们的增强效果较好。...这个我实在是说不清楚了,给几个链接大家自己看看吧: 基于心理物理学评价和偏爱映射的高动态范围图像的色调映射算子的设计 基于色彩恒常性的图像去雾技术 Retinex in Matlab

    1.1K30

    图像处理-图像增强

    图像增强前期知识 图像增强图像模式识别中非常重要的图像预处理过程。...图像增强的目的是通过对图像中的信息进行处理,使得有利于模式识别的信息得到增强,不利于模式识别的信息被抑制,扩大图像中不同物体特征之间的差别,为图像的信息提取及其识别奠定良好的基础。...图像增强按实现方法不同可分为点增强、空域增强和频域增强。 1、点增强增强主要指图像灰度变换和几何变换。...因此,根据需要可以分别增强图像的高频和低频特征。对图像的高频增强可以突出物体的边缘轮廓,从而起到锐化图像的作用。例如,对于人脸的比对查询,就需要通过高频增强技术来突出五宫的轮廓。...相应地,对图像的低频部分进行增强可以对图像进行平滑处理,一般用于图像的噪声消除。 3、频域增强 图像的空域增强一般只是对数字图像进行局部增强,而图像的频域增强可以对图像进行全局增强

    5.7K21

    图像增强简介

    数字图像的诞生并不是与计算机的发展完全相关,第一次世界大战结束后的第二年,数字图像被发明并用于报纸行业。为了当时传输此图像,发明了Bartlane电缆图像传输系统。...成功绘制月球表面图可以被认为是最早的数字图像处理。 01.图像直方图 直方图通常可以为我们提供一些优化图像的方法。...如果我们使用灰度变换将灰度值扩展到整个0-255间隔,则对比度明显得到了增强。...当图像直方图完全均匀分布时,图像的熵最大,图像对比度高。提高图像对比度的变换函数f(x)需要满足以下条件: 其中p_x代表的概率密度函数。在离散图像中,它表示直方图每个灰度级的概率。...• 将累积直方图应用于图像像素的值 06.伽马校正 伽玛校正是对图像的非线性操作,用于检测图像信号部分和浅色部分中的暗色,并增加二者的比率以提高图像对比度效果。

    71130

    图像增强综述

    该函数增强图像的对比度,显示了均匀的强度分布。 实验结果: ?...(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。...图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。实验用的sobel算子对图像进行锐化。 实验结果: ?...,它依靠图像的照度/ 反射率模型作为频域处理的基础,利用压缩亮度范围和增强对比度来改善图像的质量。...带色彩恢复因子C的多尺度算法是在多个固定尺度的基础上考虑色彩不失真恢复的结果,在多尺度Retinex算法过程中,通过引入一个色彩因子C来弥补由于图像局部区域对比度增强而导致的图像颜色失真的缺陷,通常情况下所引入的色彩恢复因子

    1.5K41

    增强弱光图像

    % 低光图像增强 % 室外场景中拍摄的图像可能由于照明条件差而严重退化 % 这些图像影响计算机视觉算法的整体性能 % 为了使计算机视觉算法在低光照条件下具有鲁棒性 % 可以使用低光图像增强来提高图像的可见性...% 低光图像或HDR图像的逐像素反转直方图与模糊图像的直方图非常相似 % 因此可以使用薄雾消除技术来增强低光图像 % 使用薄雾消除技术增强低光图像包括三个步骤: % 步骤1:取反低光图像 % 步骤2:...对取反的低光图像应用去雾算法 % 步骤3:取反增强图像 % 用薄雾消除算法增强低光图像 % 导入在低光下捕获的RGB图像。...lab2rgb(LabEnh); % 并排显示原始图像增强图像 figure, montage({A, AEnh}, 'Size', [2 1]); ?...% 使用去噪改善结果 % 低光图像可能具有高噪声级 % 增强低光图像可以提高此噪声级别 % 去噪是一个有用的后处理步骤 % 使用imguidedfilter功能从增强图像中去除噪声 B = imguidedfilter

    1.7K41

    图像增强三大类别:点增强、空域增强、频域增强

    图像增强图像模式识别中非常重要的图像预处理过程。...图像增强的目的是通过对图像中的信息进行处理,使得有利于模式识别的信息得到增强,不利于模式识别的信息被抑制,扩大图像中不同物体特征之间的差别,为图像的信息提取及其识别奠定良好的基础。...图像增强按实现方法不同可分为点增强、空域增强和频域增强。 点增强增强主要指图像灰度变换和几何变换。...因此,根据需要可以分别增强图像的高频和低频特征。对图像的高频增强可以突出物体的边缘轮廓,从而起到锐化图像的作用。例如,对于人脸的比对查询,就需要通过高频增强技术来突出五宫的轮廓。...相应地,对图像的低频部分进行增强可以对图像进行平滑处理,一般用于图像的噪声消除。 频域增强 图像的空域增强一般只是对数字图像进行局部增强,而图像的频域增强可以对图像进行全局增强

    83030

    入门|图像增强技术

    图像增强技术的作用,简单点说,就是通过对图像进行加工处理,使图像能更好的在其他领域起作用,比如人脸识别,图像分类等人工智能领域,又或者是在通信领域,通过加工恢复图像在传输中丢失的某些东西。...那么什么又是图像增强呢?通过对图像进行一些加工,从简单的裁剪、变换灰度等到复杂的各种滤波公式去噪点等等 ,大致满足以下两点的都属于图像增强的一部分。 改变图像视觉效果,使其能更好的应用在某类场景中。...学习图像增强技术也是如此,在学习这门新技术前,我们可以根据一些以往的经验先想想大概要做些什么: 图像的收集 图像的输入 图像的处理 图像的输出 图像的收集 这里主要涉及的是从视频中截取我们需要的图片。...图像增强技术的处理技术很多,先从一些简单操作开始。...#裁剪(crop) Image=cv2.imread(‘某张图片地址’) #读取图片 sp=image.shape #读取图像的形状信息并通过数组输出[图像的高,图像的宽,图像通道数] h=sp

    1.4K41
    领券