tf.name_scope()对tf.get_variable_scope().reuse_variables() 不起作用
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/details/77856961
在tensorflow中,为了 节约变量存储空间 ,我们常常需要通过共享 变量作用域(variable_scope) 来实现 共享变量 。
TensorFlow中的变量一般就是模型的参数。当模型复杂的时候共享变量会无比复杂。
tensorflow 为了更好的管理变量,提供了variable scope机制 官方解释: Variable scope object to carry defaults to provide to get_variable.
Distribuited tensorflow Multiple GPUs 如何设置训练系统 (1)每个GPU上都会有model的副本 (2)对模型的参数进行同步更新 抽象名词 计算单个副本inf
random.sample的函数原型为:random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列
你可以在怎么使用变量中所描述的方式来创建,初始化,保存及加载单一的变量.但是当创建复杂的模块时,通常你需要共享大量变量集并且如果你还想在同一个地方初始化这所有的变量,我们又该怎么做呢.本教程就是演示如何使用tf.variable_scope() 和tf.get_variable()两个方法来实现这一点.
TensorFlow提供Variable Scope机制来控制变量的作用域,一定程度上类似于C++中的namespace,使得相同名称的变量可以同时存在。
现在很多服务器配置都是单机上配有多个GPU卡。tensorflow默认占用全部的gpu的显存,但是只在第一块GPU上进行计算,这样对于显卡的利用率不高。
循环神经网络的神经网络体系结构,它针对的不是自然语言数据,而是处理连续的时间数据,如股票市场价格。在本文结束之时,你将能够对时间序列数据中的模式进行建模,以对未来的值进行预测。 1.上下文信息 回到学校,我的一个期中考试仅由真的或假的问题组成时。假设一半的答案是“真的”,而另一半则是“假的”。我想出了大部分问题的答案,剩下的是靠随机猜测。我做了一件聪明的事情,也许你也可以尝试一下这个策略。在计数了我的“真”的答案之后,我意识到它与“假”这个答案不成比例。于是我的大部分猜测是“假”的,这样就可以平衡分配。
最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y def readfile(file_path): f = codecs.open(file_path, 'r',
1. 如何使用log_device_placement参数来打印运行每一个运算的设备。
tensorflow在1.4版本引入了keras,封装成库。现想将keras版本的GRU代码移植到TensorFlow中,看到TensorFlow中有Keras库,大喜,故将神经网络定义部分使用Keras的Function API方式进行定义,训练部分则使用TensorFlow来进行编写。一顿操作之后,运行,没有报错,不由得一喜。但是输出结果,发现,和预期的不一样。难道是欠拟合?故采用正弦波预测余弦来验证算法模型。
图像标题生成器模型结合了计算机视觉和机器翻译的最新进展,利用神经网络生成现实的 图像标题。神经图像标题模型被训练,以最大限度地产生给定输入图像的字幕的可能性。并且可以用来生成新的图像描述。例如,下面是
王新民 编译整理 量子位 出品 | 公众号 QbitAI 看图说话这种技能,我们人类在幼儿园时就掌握了,机器们前赴后继学了这么多年,也终于可以对图像进行最简单的描述。 O’reilly出版社和TensorFlow团队联合发布了一份教程,详细介绍了如何在Google的Show and Tell模型基础上,用Flickr30k数据集来训练一个图像描述生成器。模型的创建、训练和测试都基于TensorFlow。 如果你一时想不起O’reilly是什么,量子位很愿意帮你回忆: 好了,看教程: 准备工作 装好T
[新增内容:今天写代码的时候,如果使用state_is_tuple=True, 那么
水平有限,如有错误,请指正! 在tensorflow中,有两个scope, 一个是name_scope一个是variable_scope,这两个scope到底有什么区别呢? 先看第一个程序: wit
引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是
该文介绍了基于注意力机制的深度学习模型在自然语言处理领域的应用,并提供了相关代码和示例。
01 seq2seq代码案例解读 RNN 模型作为一个可以学习时间序列的模型被认为是深度学习中比较重要的一类模型。在Tensorflow的官方教程中,有两个与之相关的模型被实现出来。第一个模型是围绕着Zaremba的论文Recurrent Neural Network Regularization,以Tensorflow框架为载体进行的实验再现工作。第二个模型则是较为实用的英语法语翻译器。 在这篇博客里,我会主要针对第一个模型的代码进行解析。在之后的随笔里我会进而解析英语法语翻译器的机能。论文以及Tens
tensorflow程序可以通过tf.device函数来指定运行每一个操作的设备,这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。tensorflow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称来指定执行运算的设备,比如CPU在tensorflow中的名称为/cpu:0。在默认情况下,即使机器有多CPU,tensorflow也不会区分它们,所有CPU都使用/cpu:0作为名称。而一台机器上不同为/gpu:0,第二个GPU名称为/gpu:1,以此类推。
本文介绍了如何使用TensorFlow和Keras构建一个简单的基于LSTM的文本分类器,并使用PTB数据集进行训练。首先,我们介绍了如何使用TensorFlow构建一个简单的LSTM模型,然后使用Keras封装了LSTM模型,并使用PTB数据集进行训练。最后,我们介绍了如何使用训练好的模型进行分类,并给出了代码示例。
Created with Raphaël 2.1.0inputlstm1_1lstm2_1softmaxoutput
一、简介 长短期记忆网络 LSTM(Long-Short Term Memory)是递归神经网络(RNN:Recurrent Neutral Network)的一种。 RNNs也叫递归神经网络序列,它是一种根据时间序列或字符序列(具体看应用场景)自我调用的特殊神经网络。将它按序列展开后,就成为常见的三层神经网络。常应用于语音识别。 虽然前馈神经网络取得很大成功,但它无法明确模拟时间关系,并且所有数据点都是固定长度的向量。所以就诞生了递归神经网络,递归即自我调用,递归神经网络与其他网络的不同之处在于它的隐含
上一期,我们一起学习了TensorFlow的基础知识,以及其在线性回归上的初体验,该期我们继续学习TensorFlow方面的相关知识。学习的路上,我们多多交流,共同进步。本期主要内容如下: 梯度下降TF实战 模型保存和恢复 TensorBoard可视化 模块与共享变量 一. 梯度下降TF实战 这里我们一起看下TensorFlow在梯度下降中的使用,通过TensorFlow来寻找使得损失函数最小化的系数,我们之前一起学过梯度下降方面的知识,这里不在赘述,可公众号回复“机器学习”进行查看。这里,我们从直接计算和
数据下载地址:链接:https://pan.baidu.com/s/1nwJiu4T 密码:6joq 本文代码地址:https://github.com/princewen/tensorflow_practice/tree/master/myPtrNetwork 1、什么是pointer-network Pointer Networks 是发表在机器学习顶级会议NIPS 2015上的一篇文章,其作者分别来自Google Brain和UC Berkeley。 Pointer Networks 也是一种seq2
本文介绍了神经网络在计算机视觉领域的应用,包括卷积神经网络、循环神经网络等,重点讲解了卷积神经网络在目标检测、图像分割、图像生成和风格迁移等方面的应用,以及循环神经网络在语音识别、自然语言处理等方面的应用。同时,本文还介绍了神经网络在计算机视觉领域中的前沿发展和应用,包括注意力机制、生成对抗网络、神经风格迁移等技术,并探讨了神经网络在计算机视觉领域未来的研究方向和挑战。
法一: 循环打印 模板 for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())): print '\n', x, y 实例 # coding=utf-8 import tensorflow as tf def func(in_put, layer_name, is_training=True): with tf.variable_scope(layer_name, reuse=tf.AUT
MachineLP的Github(欢迎follow):https://github.com/MachineLP
这里我们将建立 一个对抗生成网络 (GAN)训练MNIST,并在最后生成新的手写数字。
variable_scope 使用tf.variable_scope定义的命名空间,只要空间名称不同,定义的变量互不干挠,即使函数name参数相同 如果是在相同命名空间下, 如果是不可重用的(reuse=False),tf. get_variable函数会查找在当前命名空间下是否存在由tf.get_variable定义的同名变量(而不是tf.Variable定义的),如果不存在,则新建对象,否则会报错 如果是可重用的(reuse=True),如果存在,则会返回之前的对象,否则报错, tf. V
在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型)、或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量。另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要。 ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个函数来实现
1 简介 tf.Variable() tf.Variable(initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=None, import_scope=None) tf.get_variable() tf.get_variable(name, shape
今天说一下tensorflow的变量共享机制,首先为什么会有变量共享机制? 这个还是要扯一下生成对抗网络GAN,我们知道GAN由两个网络组成,一个是生成器网络G,一个是判别器网络D。G的任务是由输入的隐变量z生成一张图像G(z)出来,D的任务是区分G(z)和训练数据中的真实的图像(real images)。所以这里D的输入就有2个,但是这两个输入是共享D网络的参数的,简单说,也就是权重和偏置。而TensorFlow的变量共享机制,正好可以解决这个问题。但是我现在不能确定,TF的这个机制是不是因为GAN的提出
1、使用tf.Variable时,如果检测到命名冲突,系统会自己处理。使用tf.get_variable()时,系统不会处理冲突,而会报错
可视化 batch normalization 过程中的 tensor演化(以输入一张[1, 4 , 4, 1]的图片为例)
本篇使用TensorFlow框架,利用MNIST手写数字数据集来演示深度学习的入门概念。其训练集共有60000个样本(图片和标签),测试集有10000个样本。手写数字的图片都是尺寸为28*28的二值图:
这篇文章主要讲讲TensorBoard的基本使用以及name_scope和variable_scope的区别
版权声明:本文为博主原创文章,未经博主允许不得转载。python版本为python3,实例都是经过实际验证。 https://blog.csdn.net/jinxiaonian11/article/details/83038677
Adds a Batch Normalization layer from http://arxiv.org/abs/1502.03167
MySQL目前最新版本是8.0.27,今天下载了一个,尝尝鲜。这个版本,更像是一个bug 修复版本,修复了200多个bug。
def fully_connected(inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer()
如果说两代 Tensorflow 有什么根本不同,那应该就是 Tensorflow 2.0 更注重使用的低门槛,旨在让每个人都能应用机器学习技术。考虑到它可能会成为机器学习框架的又一个重要里程碑,本文会介绍 1.x 和 2.x 版本之间的所有(已知)差异,重点关注它们之间的思维模式变化和利弊关系。
探究 batch normalization 过程中的 decay 参数项 在 train 和 test 过程中的不同作用。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/details/76695935
DCGAN在GAN的基础上优化了网络结构,加入了 conv,batch_norm 等层,使得网络更容易训练,网络结构如下:
本文从程序员的角度对CNTK和TensorFlow做高层次的对比。本文也不属于性能分析,而是编程模型分析。文中会夹杂着大量的代码。 原标题:当TensorFlow遇见CNTK CNTK是微软用于搭建深
本文介绍了如何通过超分辨率网络,针对极低分辨率的人脸图像进行超分辨率重建,并给出了详细的训练、评估方法和代码实现。
领取专属 10元无门槛券
手把手带您无忧上云