首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Boruta 和 SHAP :不同特征选择技术之间的比较以及如何选择

    来源:DeepHub IMBA 本文约1800字,建议阅读5分钟 在这篇文章中,我们演示了正确执行特征选择的实用程序。 当我们执行一项监督任务时,我们面临的问题是在我们的机器学习管道中加入适当的特征选择。只需在网上搜索,我们就可以访问讨论特征选择过程的各种来源和内容。 总而言之,有不同的方法来进行特征选择。文献中最著名的是基于过滤器和基于包装器的技术。在基于过滤器的过程中,无监督算法或统计数据用于查询最重要的预测变量。在基于包装器的方法中,监督学习算法被迭代拟合以排除不太重要的特征。 通常,基于包装器的方法

    02

    【Python环境】基于 Python 和 Scikit-Learn 的机器学习介绍

    你好,%用户名%! 我叫Alex,我在机器学习和网络图分析(主要是理论)有所涉猎。我同时在为一家俄罗斯移动运营商开发大数据产品。这是我第一次在网上写文章,不喜勿喷。 现在,很多人想开发高效的算法以及参加机器学习的竞赛。所以他们过来问我:”该如何开始?”。一段时间以前,我在一个俄罗斯联邦政府的下属机构中领导了媒体和社交网络大数据分析工具的开发。我仍然有一些我团队使用过的文档,我乐意与你们分享。前提是读者已经有很好的数学和机器学习方面的知识(我的团队主要由MIPT(莫斯科物理与技术大学)和数据分析学院的毕业生构

    010

    7000 字精华总结,Pandas/Sklearn 进行机器学习之特征筛选,有效提升模型性能

    作者 | 俊欣 来源 | 关于数据分析与可视化 今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征的数量会带来许多的好处,例如 提高预测的精准度 降低过拟合的风险 加快模型的训练速度 增加模型的可解释性 事实上,很多时候也并非是特征数量越多训练出来的模型越好,当添加的特征多到一定程度的时候,模型的性能就会下降,从下图中我们可以看出, 因此我们需要找到哪些特征是最佳的使用特征,当然我们这里分连续型的变

    03

    文献翻译:Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in...

    信息基因的选择是基因表达研究中的重要问题。基因表达数据的小样本量和大量基因特性使选择过程复杂化。此外,所选择的信息基因可以作为基因共表达网络分析的重要输入。此外,尚未充分探索基因共表达网络中枢纽基因和模块相互作用的鉴定。本文提出了一种基于支持向量机算法的统计学上基因选择技术,用于从高维基因表达数据中选择信息基因。此外,已经尝试开发用于鉴定基因共表达网络中的中枢基因的统计学方法。此外,还开发了差异中枢基因分析方法,以在案例与对照研究中基于它们的基因连接性将鉴定的中枢基因分组成各种组。基于这种提出的方​​法,已经开发了R包,即dhga(https://cran.rproject.org/web/packages/dhga)。在三种不同的农作物微阵列数据集上评估了所提出的基因选择技术以及中枢基因识别方法的性能。基因选择技术优于大多数信息基因的现有技术。所提出的中枢基因识别方法,与现有方法相比,确定了少数中枢基因,这符合真实网络的无标度属性原则。在这项研究中,报道了一些关键基因及其拟南芥直系同源物,可用于大豆中的铝毒性应激反应工程。对各种选定关键基因的功能分析揭示了大豆中铝毒性胁迫响应的潜在分子机制。

    01

    机器学习| 第三周:数据表示与特征工程

    到目前为止,表示分类变量最常用的方法就是使用 one-hot 编码(one-hot-encoding)或 N 取一编码(one-out-of-N encoding), 也叫虚拟变量(dummy variable)。虚拟变量背后的思想是将一个分类变量替换为一个或多个新特征,新特征取值为 0 和 1 。 如下图,是用来预测某个人的收入是大于 50K 还是小于 50K 的部分数据集。其中,只有 age 和 hour-per-week 特征是数值数据,其他则为非数值数据,编码就是要对这些非数值数据进行数值编码。将数据转换为分类变量的 one-hot 编码有两种方法:一种是使用 pandas,一种是使用 scikit-learn 。 pandas 使用起来会简单一点,故本文使用的是 pandas 方法。

    02
    领券