HBase中RowFilter和BloomFilter原理?...1)RowFilter原理简析 RowFilter顾名思义就是对rowkey进行过滤,那么rowkey的过滤无非就是相等(EQUAL)、 大于(GREATER)、小于(LESS),大于等(GREATER_OR_EQUAL...Hbase中的RowFilter采用比较符结合比较器的方式来进行过滤 比较器的类型如下: BinaryComparator BinaryPrefixComparator NullComparator...BitComparator RegexStringComparator SubStringComparator 例如: Filter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL..., new BinaryComparator(Bytes.toBytes(rowKeyValue))); Scan scan = new Scan(); scan.setFilter(rowFilter
提供基础DataTable中数据的动态视图 完全脱离数据源进行数据筛选 属性名称 说明 Table 用于获取或设置源DataTable Sort 获取或设置DataView的一个或多个排序列以及排序顺序 RowFilter...获取或设置用于筛选在DataView中查看哪些行的表达式 Count 在应用RowFilter后,获取DataView中的行数 数据筛选 下面这行代码描述了再DataView中筛选所有ClassName...this.dt1.DefaultView.RowFilter = string.Format("ClassName= like '%%'");
直接上例子吧,不多说别的了,第一个例子是RowFilter的。...new Scan(); scan.addColumn(Bytes.toBytes("colfam1"), Bytes.toBytes("col-0")); Filter filter1 = new RowFilter...for (Result res : scanner1) { System.out.println(res); } scanner1.close(); Filter filter2 = new RowFilter...for (Result res : scanner2) { System.out.println(res); } scanner2.close(); Filter filter3 = new RowFilter..., new BinaryComparator(Bytes.toBytes("row-03"))); filters.add(filter1); 302 Filter filter2 = new RowFilter
org.apache.hadoop.hbase.filter.BinaryPrefixComparator; import org.apache.hadoop.hbase.filter.CompareFilter; import org.apache.hadoop.hbase.filter.RowFilter...user_activity")); // 设置扫描对象 Scan scan = new Scan(); // 设置RowFilter...过滤器,匹配RowKey前缀为"user_100" RowFilter filter = new RowFilter(CompareFilter.CompareOp.EQUAL,...}); // 关闭扫描器 scanner.close(); } } } 在上述代码中,我们使用了HBase的过滤器功能,通过RowFilter...过滤出以"user_100"开头的用户行为数据: RowFilter过滤器:通过RowFilter和BinaryPrefixComparator,我们实现了基于RowKey前缀的查询过滤。
以下介绍在hbase shell中常用的过滤器: > scan 'testByCrq', FILTER=>"RowFilter(=,'substring:111')" 1 如上命令所示,查询的是表名为testByCrq...> scan 'testByCrq', FILTER=>"RowFilter(=,'binary:0111486816556')" 1 如上命令所示,查询的是表名为testByCrq,过滤方式是通过rowkey...> scan 'testByCrq', FILTER=>"RowFilter(<=,'binary:0111486816556')" 1 如上命令所示,查询的是表名为testByCrq,过滤方式是通过rowkey
import org.apache.hadoop.hbase.filter.RegexStringComparator; import org.apache.hadoop.hbase.filter.RowFilter...scan = new Scan(); /*List filters = new ArrayList(); Filter filter1 = new RowFilter...CompareOp.EQUAL,new RegexStringComparator("kpi")); filters.add(filter1); Filter filter2 = new RowFilter...FilterList filterList = new FilterList(filters); scan.setFilter(filterList);*/ Filter filter = new RowFilter...logger.info("tableName:" + tableName + ",rowKey:" + regex); Scan scan = new Scan(); Filter filter = new RowFilter
= connection.getTable(TableName.valueOf(TABLE_NAME)); Scan scan = new Scan(); Filter filter = new RowFilter...printRow(result); } resultScanner.close(); table.close(); 在 HBase API 中提供了大量的 Filter 实现,比如一些常见的 Filter: RowFilter...prepare(); System.out.println("---------- Row Filter ----------"); filter(new RowFilter...(CompareOperator.EQUAL, new BinaryComparator(Bytes.toBytes("row_2")))); filter(new RowFilter(...CompareOperator.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row_5")))); filter(new RowFilter
一、比较过滤器 1、rowKey过滤器RowFilter 通过RowFilter过滤比rowKey 0003小的所有值出来 /** * hbase 行键过滤器 RowFilter *...[通过RowFilter过滤 比rowKey 0003小的所有值出来] * @throws Exception */ @Test public void rowKeyFilter...TableName.valueOf("mytest1")); Scan scan = new Scan(); //创建一个过滤器,并将其添加至scan对象 <= RowFilter...rowFilter = new RowFilter(LESS, new BinaryComparator(Bytes.toBytes("0003"))); scan.setFilter...(rowFilter); // scanner 为 行数据result的集合 ResultScanner scanner = mytest1.getScanner(scan
给第一个程序实验创建一个名为Filter的package、名为Rowfilter的class。给第二个程序实验在名为Filter的package下创建名为Familyfilter的class。...按字节索引顺序比较指定字节数组,采用Bytes.compareTo(byte[]) BinaryPrefixComparator 跟上面相同,使用Bytes.compareTo()进行匹配,但是是从左端开始前缀匹配行过滤器RowFilter...行比较过滤器实验RowFilter 该过滤器是基于行值(row)来过滤数据,不符合条件的row的行将要被过滤掉。
MultipleColumnPrefixFilter 复合列前缀过滤器 FamilyFilter 列簇过滤器 ColumnPaginationFilter SingleColumnValueFilter 单列值过滤器 RowFilter...InclusiveStopFilter DependentColumnFilter FirstKeyOnlyFilter KeyOnlyFilter (2) 过滤器分类 类别 过滤器 比较过滤器 RowFilter...org.apache.hadoop.hbase.filter.PrefixFilter; import org.apache.hadoop.hbase.filter.QualifierFilter; import org.apache.hadoop.hbase.filter.RowFilter...table.getScanner(scan); HBasePrintUtil.printResultScanner(scanner); } /* * 测试RowFilter...void testRowFilter() throws Exception { Scan scan = new Scan(); Filter filter = new RowFilter
{ string tempName = pi.Name; //设置 RowFilter...reader.GetSchemaTable().DefaultView.RowFilter = string.Format("ColumnName
”); DataTable dt = new DataTable(); ds.Tables[“tbcalicoinfo”].DefaultView.RowFilter...= “country is not null”;//RowFilter 过滤 ds.Tables[“tbcalicoinfo”].DefaultView.Sort = “country...ddl2.Items.Insert(0, new ListItem(“–All–“, “All”)); ds.Tables[“tbcalicoinfo”].DefaultView.RowFilter...dt.Select(“ResellerName is not null”,”ResellerName asc”); ds.Tables[“tbcalicoinfo”].DefaultView.RowFilter...ddl4.Items.Insert(0, new ListItem(“–All–“, “All”)); ds.Tables[“tbcalicoinfo”].DefaultView.RowFilter
spreadNS.Filter.HideRowFilter(new spreadNS.Range(2, 1, salesData.length - 1, salesData[0].length)); sheet.rowFilter...//选择想要展示的数据筛选项 function prepareFilterItems(sheet, headers) { var items = []; var filter = sheet.rowFilter... 至此已经完成了Html文件的引入。...3.更多资源篇 3.1完整代码资源 https://github.com/GrapeCityXA/SpreadJS-rowFilter/tree/main (Github) https://gitee.com
fpSpread1.ActiveSheet.RowFilter = styleFilter; // 以文本对数据区域进行筛选。...FarPoint.Win.Spread.StyleRowFilter rowFilter = new FarPoint.Win.Spread.StyleRowFilter(fpSpread1.ActiveSheet...,inStyle,outStyle); // Apply the column definition to the filter. rowFilter.ColumnDefinitions = fcdc;...// Apply the row filter to the sheet. fpSpread1.ActiveSheet.RowFilter = rowFilter; 附:Spread for Windows
scan.addColumn("v".getBytes(),"c1".getBytes()); scan.setMaxVersions(3);//设置读取的最大的版本数 RowFilter...rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL,new BinaryComparator(q.getBytes()));//基于过滤器设置查询条件...scan.setFilter(rowFilter); ResultScanner r = table.getScanner(scan); List<String
RowFilter...Took 0.0033 seconds HBase Filter 使用简单例子 行键过滤器 RowFilter...:针对行键进行过滤 scan 'test',FILTER=>"RowFilter(=,'binaryprefix:row')" 说明:把test表中rowkey 以row开头的数据查出来
当需要针对行键进行更复杂的过滤时,可以使用RowFilter。...构造函数:RowFilter(CompareFilter.CompareOp rowCompareOp, ByteArrayComparable rowComparator) ?...//RowFilter例子 private static void scanFilter09() throws IOException, UnsupportedEncodingException...rowFilter = new RowFilter(CompareOp.EQUAL, new SubstringComparator("01")); Scan scan = new...Scan(); scan.setFilter(rowFilter); ResultScanner rs = ht.getScanner(scan); for(Result result
其API中提供的Filter大致如下: CompareFilter 是高层的抽象类,下面我们将看到他的实现类和实现类代表的各种过滤条件 RowFilter,FamliyFilter,QualifierFilter...主要代码如下: Filter filter2 = new RowFilter(CompareFilter.CompareOp.EQUAL, // co RowFilterExample-2-Filter2
fwebcontrols.FlyTreeNode tmpNd; switch (keytype) { case "cid": dv.RowFilter...parentkey : key) + "='" + initvalue + "'"; break; case "id": dv.RowFilter = initvalue...parentkey : key) + "=" + initvalue + ""; break; default: dv.RowFilter = "isnull("
根据条件过滤查询 {filter() AND/OR filter()} 个人意见:substring筛选时使用=来筛选,否则会出错;binary筛选时可以用=、>=、<=等操作 根据主键进行过滤 RowFilter...(=,'substring:111') 主键中包含111 RowFilter(=,'binary:111') 主键等于111 PrefixFilter('user1') 主键的前缀是user1 根据列进行过滤
领取专属 10元无门槛券
手把手带您无忧上云