1、点击[公式] 2、点击[其他函数] 3、点击[统计] 4、点击[COVARIANCE.P] 5、点击[Array1] 6、点击[Array2] ...
大家好,又见面了,我是你们的朋友全栈君 https://www.zhihu.com/question/48308610/answer/996133623 不过的确,我们要这个东西有什么意义呢?...解释物理现象:力的做功,当力的向量和移动距离向量有夹角时,力的功就是力向量与距离向量的点积。 方便复杂计算: 例如,向量的点积为零,意味着垂直,这在证明垂直问题上有很大作用。...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
一是使用plot函数 画出两个向量的曲线,并将它们重叠在一起。...这样可以清楚地看到两个向量之间的差异 x = linspace(0,2*pi,100); y1 = sin(x); y2 = cos(x); plot(x,y1,x,y2) legend('sin(x)...','cos(x)') 二是使用stem函数 构造两个向量的差异向量,用stem函数绘制差异向量的高度 x = linspace(0,2*pi,100); y1 = sin(x); y2 = cos...- y2; plot(x,y1,x,y2); hold on; stem(x,diff); legend('sin(x)','cos(x)','difference'); 三是bar函数 绘制差异向量的条形图
(x1平方+y1平方)*根号下(x2平方+y2平方) 向量的夹角就是向量两条向量所成角。...这里应当注意,向量是具有方向性的。BC与BD是同向,所以夹角应当是60°。BC和CE你可以把两条向量移动到一个起点看,它们所成角为一个钝角,120°。...扩展资料 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。...这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。...A1X+B1Y+C1=0……..(1) A2X+B2Y+C2=0……..(2) 则(1)的方向向量为u=(-B1,A1),(2)的方向向量为v=(-B2,A2) 由向量数量积可知,cosφ=u·v/|u
接上篇:机器学习中的统计学——概率分布 在之前的几篇文章中曾讲述过主成分分析的数学模型、几何意义和推导过程(PS:点击即可阅读),这里面就要涉及到协方差矩阵的计算,本文将针对协方差矩阵做一个详细的介绍...,其中包括协方差矩阵的定义、数学背景与意义以及计算公式的推导。...协方差定义 X、Y 是两个随机变量,X、Y 的协方差 cov(X, Y) 定义为: ? 其中: ? 、 ? 2....协方差矩阵定义 矩阵中的数据按行排列与按列排列求出的协方差矩阵是不同的,这里默认数据是按行排列。即每一行是一个observation(or sample),那么每一列就是一个随机变量。 ?...求解协方差矩阵的步骤 举个例子,矩阵 X 按行排列: ? 1. 求每个维度的平均值 ? 2. 将 X 的每一列减去平均值 ? 其中: ? 3. 计算协方差矩阵 ?
p=10165 ---- 在实践中, 因子负载较低(或测量质量较差)的模型的拟合指数要好于因子负载较高的模型。...例如,如果两个模型具有相同的错误指定级别,并且因子负载为.9的模型的RMSEA可能高于.2,而因子负载为.4的模型的RMSEA可能小于.05。本文包含一些图表,可以非常清楚地传达这些结果。...考虑顺序效应,两个项目可能具有独立于其共享因子的相关误差,这仅仅是因为一个项目跟随另一个项目(序列相关)。CFA(缺省值)中不存在此相关误差将对任何全局拟合指数产生负面影响。...但是,考虑x2和x7(lhs 55),. 373的低功率,MI很大。是否有一些理论将这两个项目联系在一起?我可以解释建议的相关性吗?...潜在变量模型中测量质量和拟合指数截止之间的棘手关系。“人格评估杂志”。
方差是各个样本与样本均值的差的平方和的均值,分母除以n-1是为了满足无偏估计: 3.样本标准差 4.协方差 协方差(Covariance)是度量两个变量的变动的同步程度,也就是度量两个变量线性相关性程度...协方差的计算公式如下: 5.协方差矩阵 在统计学与概率论中,协方差矩阵的每个元素是各个向量元素之间的协方差,是从标量随机变量到高维度随机向量的自然推广。...协方差矩阵(Covariance matrix)由随机变量集合中两两随机变量的协方差组成。矩阵的第i行第j列的元素是随机变量集合中第i和第j个随机变量的协方差。...假设我们有三个n维随机变量X,Y,Z(一般而言,在实际应用中这里的随机变量就是数据的不同维度。切记:协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的协方差。)...2.马哈拉诺比斯距离也可以定义为两个服从同一分布并且其协方差矩阵为Σ 的样本点x与y的差异程度: 假设x,y都是3维向量,那么由于(x-y)T是1×3矩阵,Σ的逆是3×3矩阵(因为这里我们的数据点有
游戏开发中的向量数学 介绍 坐标系(2D) 向量运算 会员访问 添加向量 标量乘法 实际应用 运动 指向目标 单位向量 正常化 反射 点积 面对 叉积 计算法线 指向目标 介绍 本教程是线性代数的简短实用介绍...以下两个向量是相同的: 两个向量都代表一个点,该点向右4个单位,在某个起点下方3个单位。在平面上绘制矢量的位置无关紧要,它始终表示相对方向和大小。...; } 叉积 像点积一样,叉积是对两个向量的运算。但是,叉积的结果是一个向量,向量的方向垂直于两者。其大小取决于它们的相对角度。如果两个向量平行,则其叉积的结果将为空向量。...如果我们有三角形,ABC则可以使用矢量减法找到两个边AB和AC。使用叉积, 产生一个垂直于两个方向的向量:表面法线。...但是,在3D中,这还不够。我们还需要知道要旋转的轴。通过计算当前朝向和目标方向的叉积可以发现。所得的垂直向量是旋转轴。
1、R中的向量化运算-seq seq(1, 10, by=1) seq(1, 10, by=0.1) seq(1.9, 10, by=0.1) #注意,不能这样子递减 seq(10, 1, by=...=100) seq(10, 1, length.out=91) #数清楚里面的个数 2、R中的向量化运算-rep > rep(3.14, 5) [1] 3.14 3.14 3.14 3.14 3.14...9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 > length(rep(1:10, 5)) [1] 50 3、R中的向量化运算...Warning message: In 1:3 + 1:10 : longer object length is not a multiple of shorter object length > > #两个向量长度不同的情况下...,要进行向量计算,短的那个向量会循环使用。
numpy中的标量或者向量涉及到矩阵计算时,会遇到以下的坑: a = np.arange(6) print("a = np.arange(6) out:\n", a) # [ 0 1 2 3...# [ 0 1 2 3 4 5] print("aT.shape is", aT.shape) # (6,) print("aT.dim is", aT.ndim) # 1 即转置后向量没有变化...,对于涉及到该向量的矩阵计算会导致错误。...应用以下的代码: b = np.arange(6).reshape(1, 6) print("b = np.arange(6).reshape(1, 6) out:\n", b) # [[0 1 2
在Andrew Ng的>课程中,多次强调了使用向量化的形式进行编码,在深度学习课程中,甚至给出了编程原则:尽可能避免使用for循环而采用向量化形式。...但是对于机器学习领域广为使用的python语言而言,并没有内置这样的功能,毕竟python是一门通用语言。好消息是,借助一些第三方库,我们也可以很容易的处理向量数值运算。...许多Numpy运算都是用C实现的,相比Python中的循环,速度上有明显优势。所以采用向量化编程,而不是普通的Python循环,最大的优点是提升性能。...另外相比Python循环嵌套,采用向量化的代码显得更加简洁。...更多关于numpy向量化编程的指导,可以参考这本开源的在线书籍:From Python to Numpy )
题目 给定两个稀疏向量,计算它们的点积(数量积)。 实现类 SparseVector: SparseVector(nums) 以向量 nums 初始化对象。...dotProduct(vec) 计算此向量与 vec 的点积。 稀疏向量 是指绝大多数分量为 0 的向量。 你需要 高效 地存储这个向量,并计算两个稀疏向量的点积。...进阶:当其中只有一个向量是稀疏向量时,你该如何解决此问题?...解题 使用 哈希 存储非0的元素,key 是下标,value 是值 class SparseVector { public: unordered_map m; int...博客地址 https://michael.blog.csdn.net/ 长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
游戏开发中的进阶向量数学 飞机 到飞机的距离 远离原点 以2D方式构建平面 飞机的一些例子 3D碰撞检测 更多信息 飞机 点积具有带有单位向量的另一个有趣的属性。...平面将整个空间分为正数(在平面上)和负数(在平面下),并且(与流行的看法相反),您还可以在2D中使用其数学运算: 垂直于曲面的单位向量(因此,它们描述了曲面的方向)称为单位法向向量。...在3D中,这是完全相同的,除了平面是一个无限的表面(想象一个可以定向并固定到原点的无限的平纸)而不是一条线。 到飞机的距离 现在很清楚飞机是什么,让我们回到点积。...var N = normal; var D = normal.Dot(point); 对于空间中的两个点,实际上有两个平面穿过它们,它们共享相同的空间,但法线指向相反的方向。...但是在3D中,这种方法存在问题,因为在某些情况下可能找不到分离平面。这是这种情况的一个示例: 为了避免这种情况,需要测试一些额外的平面作为分隔符,这些平面是面A的边与面B的边之间的叉积。
在机器学习中的矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导的9种定义与求导布局的概念。...今天我们就讨论下其中的标量对向量求导,标量对矩阵求导, 以及向量对向量求导这三种场景的基本求解思路。 对于本文中的标量对向量或矩阵求导这两种情况,如前文所说,以分母布局为默认布局。...向量对向量求导,以分子布局为默认布局。如遇到其他文章中的求导结果和本文不同,请先确认使用的求导布局是否一样。另外,由于机器学习中向量或矩阵对标量求导的场景很少见,本系列不会单独讨论这两种求导过程。...首先我们想到的是基于矩阵求导的定义来做,由于所谓标量对向量的求导,其实就是标量对向量里的每个分量分别求导,最后把求导的结果排列在一起,按一个向量表示而已。...那么我们可以将实值函数对向量的每一个分量来求导,最后找到规律,得到求导的结果向量。
在机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法中,我们讨论了定义法求解矩阵向量求导的方法,但是这个方法对于比较复杂的求导式子,中间运算会很复杂,同时排列求导出的结果也很麻烦。...因此我们需要其他的一些求导方法。本文我们讨论使用微分法来求解标量对向量的求导,以及标量对矩阵的求导。 本文的标量对向量的求导,以及标量对矩阵的求导使用分母布局。...\mathbf{x}})^Td\mathbf{x}$$ 从上次我们可以发现标量对向量的求导和它的向量微分有一个转置的关系。 ...比起定义法,我们现在不需要去对矩阵中的单个标量进行求导了。 ...微分法求导小结 使用矩阵微分,可以在不对向量或矩阵中的某一元素单独求导再拼接,因此会比较方便,当然熟练使用的前提是对上面矩阵微分的性质,以及迹函数的性质熟练运用。
-totalSV: 表示支持向量的总数。 -rho: 决策函数wx+b中的常数项的相反数(-b)。 -Label: 表示数据集中类别的标签,比如二分类常见的1和-1。...如Label=[1; -1],nSV=[63; 67],则标签为1的样本有63个支持向量,标签为-1的有67个。 -sv_coef: 表示每个支持向量在决策函数中的系数。...-SVs: 表示所有的支持向量,如果特征是n维的,支持向量一共有m个,则为m x n的稀疏矩阵。...两个参数g以及r:g一般可选1 2 3 4,r选0.2 0.4 0.60.8 1 4)自定义核函数 与核函数相对应的libsvm参数: 1)对于线性核函数,没有专门需要设置的参数 2)对于多项式核函数...-g用来设置核函数中的gamma参数设置,也就是公式中的第一个r(gamma),默认值是1/k(k是类别数)。 4)对于sigmoid核函数,有两个参数。
今天我们来认识下Threejs中的向量,在Threejs中,有二维向量Vector2、三维向量Vector3和四维向量Vector4之分,这些向量可以表示很多数据,后面会一一介绍,在了解Threejs中的向量之前...,我们先来复习下数学中的向量1.数学中的向量在数学中,向量(也称为矢量),指具有大小和方向的量。...Threejs中的向量二维向量(Vector2)一个二维向量是一对有顺序的数字(标记为x和y),可用来表示很多事物,例如: 一个位于二维空间中的点(例如一个在平面上的点)。....setY ( y : Float ) : 将向量中的y值替换为y。 .sub ( v : Vector2 ) : 从该向量减去向量v。...任意的、有顺序的、四个为一组的数字组合。 其他的一些事物也可以使用四维向量进行表示,但以上这些是它在three.js中的常用用途。
在RDG的应用场景中,用户无需直接RDP服务器连接,而是直接连接网关。网关身份验证成功后,,网关会将RDP流量转发至用户指定的地址,因此在这里网关实际上就是一个代理。...在2020年1月份的安全更新中,微软修复了RDG中存在的两个漏洞。...分配的漏洞编号分别为CVE-2020-0609和CVE-2020-0610,而这两个漏洞都可以允许攻击者在目标设备上实现预认证远程代码执行。...每个报文中都包含一个Header,其中包含如下字段数据: fragment_id:报文在序列中的具体位置; num_fragments:序列中报文的总数量; fragment_length:报文数据的长度...memcpy_s()函数会将每个分段数据(fragment)拷贝到重组缓冲区中的一个偏移量地址,重组缓冲区在堆上进行分配,每个分段的偏移量由fragment_idx 1000得到。
乱序函数 在机器学习中为了防止模型学习到样本顺序这些影响泛化能力的特征,通常在模型进行训练之前打乱样本顺序。...Numpy模块提供了permutation(x)和shuffle(x)两个乱序函数,permutation(x)和shuffle(x)两个函数都在 Numpy 的 random 模块下,因此要使用这两个乱序函数需要先导入...(本文的所有数组指的都是ndarray数组)、列表以及元组时,则对数组、列表以及元组中的元素值进行乱序排列; 无论实现哪种功能,permutation(x)函数最终返回的都是乱序后的数组。...(因为乱序是随机的,有可能得到不同的乱序结果 ) random.shuffle(x) shuffle(x)函数中的参数 x 只能是数组或者列表(不能是元组)。...关于shuffle(x)函数对高维数组和列表的乱序处理这里不再赘述。 总结 下面通过一个表格对permutation(x)和shuffle(x)两个乱序函数进行一个简单的总结。
领取专属 10元无门槛券
手把手带您无忧上云