在python中画散点图主要是用matplotlib模块中的scatter函数,先来看一下scatter函数的基本信息。...数据(取第一列作为x,取第四列作为y)截图: 代码如下: import matplotlib.pyplot as plt import numpy as np # 定义画散点图的函数 def...Result Analysis') # 设置横坐标名称 ax1.set_xlabel('gamma-value') # 设置纵坐标名称 ax1.set_ylabel('R-value') # 画散点图
,接下来我们就推出基础散点图的Python绘制版本。...本期主要涉及的知识点如下: Python-seaborn 绘制多类别散点图 seaborn 定制化美化设置 Python-seaborn 绘制多类别散点图 由于涉及的图表类型为多类别散点图的绘制,在使用常规...matplotlib进行绘制时会显得格外繁琐,所以我们选择了对matplotlib进行了更高级的API封装,使作图更加容易的seaborn包进行图表的绘制,更多seaborn 介绍,大家可以直接去seaborn...seaborn 定制化美化操作 详细的美化操作对于seaborn来说,代码过多,且需记住的绘图函数也较多,这里和R-ggplot2 绘图一样,我们直接选择matplotlib 绘图主题进行设置即可,此外...总结 本期推文我们推出了基础散点图的Python绘制版本,希望可以满足喜欢使用Python绘图的小伙伴。大家有啥意见也可以在文末 读者讨论 区进行谈论交流啊。
Python-seaborn 绘制多类别散点图 seaborn 定制化美化设置 Python-seaborn 绘制多类别散点图 由于涉及的图表类型为多类别散点图的绘制,在使用常规matplotlib进行绘制时会显得格外繁琐...,所以我们选择了对matplotlib进行了更高级的API封装,使作图更加容易的seaborn包进行图表的绘制,更多seaborn 介绍,大家可以直接去seaborn官网进行相关资料的查阅。...seaborn 定制化美化操作 详细的美化操作对于seaborn来说,代码过多,且需记住的绘图函数也较多,直接选择matplotlib 绘图主题进行设置即可,此外,我们还对图例等图元素进行设置,具体代码如下...这里指出一下:由于seaborn是对matplotlib的高度封装,这也导致其对个别图表元素的定制化设置就相对较难(如图例) 最终的可视化效果如下: ?...总结 本期推文我们推出了基础散点图的Python绘制版本,希望可以满足喜欢使用Python绘图的小伙伴。大家有啥意见也可以在文末 读者讨论 区进行谈论交流啊。
折线图和散点图是最常用的展示两个变量间关系的图表,在seaborn中,通过以下两个函数来绘制对应的图形 1. satterplot, 绘制散点图 2. lineplot, 绘制折线图 seaborn采用了类似...ggplot2的语法,每个变量为数据框的某一列,对于散点图和折线图而言,基本的变量就是x和y两个变量了。...除此之外,其他列的变量可以作为属性的映射,常用的属性映射列表如下 1. hue, 用于映射颜色 2. size,用于映射线条的宽度或者点的大小 3. style, 用于映射线条的样式或者点的样式 散点图的代码示例如下...但是有一个例外,就是size属性,当size属性对应的列为数值时,seaborn会自动将数值设置为点的大小,此时指定size_order属性时没用的。...seaborn会自动根据属性组合进行图例的显示,示例如下 sns.scatterplot(data=df, x="total_bill", y="tip", hue="day", style="day"
本篇是《Seaborn系列》文章的第2篇-散点图。...案例代码::欢迎给个star https://github.com/Vambooo/SeabornCN 散点图 解读 可以通过调整颜色、大小和样式等参数来显示数据之间的关系。...函数原型 seaborn.scatterplot(x=None, y=None, hue=None, style=None, size=None, data=None...hue 根据设置的类别,产生颜色不同的点的散点图 eg.下图为根据time分类的散点图 """ sns.scatterplot(x="total_bill", y="tip", hue="time",data...("tips") """ 案例4:设置hue 根据设置的类别,产生颜色不同的点的散点图,设置style,使其生成不同的标记的点 eg.下图为hue与style设置不同的分类的散点图 """ sns.scatterplot
分类散点图 stripplot()可以自己实现对数据分类的展现,也可以作为盒形图或小提琴图的一种补充,用来显示所有结果以及基本分布情况。...as np #设置风格 sns.set(style="whitegrid") # 构建数据 tips = sns.load_dataset("tips") """ 案例11: 根据数据情况绘制箱图和分类散点图...在箱图上绘制分类散点图 """ sns.boxplot(x="tip", y="day", data=tips, whis=np.inf) sns.stripplot(x="tip", y="day"...plt #设置风格 sns.set(style="whitegrid") # 构建数据 tips = sns.load_dataset("tips") """ 案例10: 根据数据情况绘制小提琴图和分类散点图...在小提琴图上绘制分类散点图 """ sns.violinplot(x="day", y="total_bill", data=tips, inner=None, color
分簇散点图 分簇散点图 可以理解为数据点不重叠的分类散点图 该函数类似于stripplot(),但该函数可以对点进行一些调整,使得数据点不重叠。...as np #设置风格 sns.set(style="whitegrid") # 构建数据 tips = sns.load_dataset("tips") """ 案例8: 根据数据情况绘制箱图和分簇散点图...在箱图上绘制分簇散点图 """ sns.boxplot(x="tip", y="day", data=tips, whis=np.inf) sns.swarmplot(x="tip", y="day"...plt #设置风格 sns.set(style="whitegrid") # 构建数据 tips = sns.load_dataset("tips") """ 案例9: 根据数据情况绘制小提琴图和分簇散点图...在小提琴图上绘制分簇散点图 """ sns.violinplot(x="day", y="total_bill", data=tips, inner=None) sns.swarmplot(x="day
Seaborn的散点图矩阵(Pairs Plots) 在开始之前,我们需要知道我们有什么数据。我们可以将社会经济数据用熊猫(Pandas)数据框加载并查看列: ?...虽然后面我们将使用分类变量进行着色,但seaborn中的默认对图仅绘制了数字列。...创建默认的散点图矩阵很简单:我们加载到seaborn库并调用pairplot函数,将它传递给我们的数据框: # Seaborn visualization libraryimport seaborn as...散点图矩阵建立在两个基本图形上,直方图和散点图。对角线上的直方图允许我们看到单个变量的分布,而上下三角形上的散点图显示了两个变量之间的关系。...结论 散点图矩阵是快速探索数据集中的分布和关系的强大工具。Seaborn提供了一个简单的默认方法,可以通过Pair Grid类来定制和扩展散点图矩阵。
Seaborn 一、Seaborn和Matplotlib对比 Seaborn是matplotlib的强大的一个扩展。 一个例子 要求画出花萼和花瓣的长度的散点图,并且颜色要区分花的种类 ?...使用seaborn画图 seaborn比matplotlib画散点图简单的多,只需要一行代码就搞定。...三、Seaborn实现柱状图和热力图 0x1 数据准备 seaborn提供了一个load_dataset方法可以在线的下载数据作为实验,这里就用这个方法生成实验数据: ?...load_dataset实现的源码在https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py 数据透视表 df = df.pivot...0x2 绘制热力图 seaborn提供了heatmap方法用于绘制热力图: ? 参数annot=True,fmt='d'可以在热力图中让每一个方块显示具体的值: ?
pd.read_csv('test.csv') 需求分析 需要计算标准数据与实际测量数据的偏差(bias)、均方根误差(RMSE)、散射指数(SI)三个值 需要根据点坐标(标准值,实际值)绘制散点图...df.plot.scatter(x='formal', y='test') 彩色散点图 根据每对数据的偏差,人为划分颜色 # 已知 数据的偏差 绝对值为 0.08 bias = abs(bias) for...(len(df)): data_test.append(df['test'][i]) data_formal.append(df['formal'][i]) # 由点密度绘制散点图...官方文档:https://www.osgeo.cn/matplotlib/api/_as_gen/matplotlib.pyplot.hist2d.html 个人在调试时 理解为对所生成散点图色彩范围的划分...elif delData <= 30 * bias: df['color'][i] = 3 else: df['color'][i] = 4 # 由bias绘制散点图
FeatureScatter散点图 FeatureScatter()函数可以用于可视化两个高变特征(通常是基因)在单细胞数据集中的表达水平。...结果生成一个散点图,其中每个点代表一个单独的细胞,X 轴和 Y 轴分别代表两个指定特征的表达量。...一般在质控过程中我们会简单可视化一下nCount_RNA vs nFeature_RNA,即基因数量与分子总数的关系的散点图 从图中可以简单推断测序深度与基因数量的关系,图上会显示两者之间的相关系数,高质量的测序数据中两者基本处于正相关的关系
丰富的图表类型:Seaborn内置了许多常见的图表类型,如散点图、线图、柱状图、箱线图、直方图、热力图等,能够帮助用户快速创建漂亮且具有统计意义的图形。...as pd # 加载数据集 data = pd.read _csv('data.csv ') # 绘制散点图 sns.scatterplot (data=data, x='...分类散点图:如 swarmplot 和 stripplot。 箱线图:展示数据的分布情况。 热力图:用于展示矩阵数据的相关性。...实例应用 以下是一个简单的示例,展示如何使用Seaborn绘制一个散点图: import seaborn as sns import matplotlib.pyplot as plt import pandas...例如,条形图适用于分类数据的比较,散点图适用于显示变量之间的关系等。 颜色使用和注释:合理使用颜色和添加必要的注释可以显著提升图表的可读性和美观度。
你会得到最出seaborn的,如果你的数据集,这种方式组织,并且在更详细的解释如下。 我们绘制了一个带有多个语义变量的分面散点图。 此特定图显示了提示数据集中五个变量之间的关系。...虽然散点图是一种非常有效的方法,但是一个变量代表时间度量的关系更好地用线表示。该relplot()函数有一个方便的kind参数,可让您轻松切换到此替代表示: ?...例如,还可以使用以下方法增强散点图以包括线性回归模型(及其不确定性)lmplot(): [图片上传中......(image-af56dc-1539877746137-10)] 专业分类图 标准散点图和线图可视化数值变量之间的关系,但许多数据分析涉及分类变量。...在最精细的级别,您可能希望通过绘制散点图来查看每个观察,该散点图调整沿分类轴的点的位置,以使它们不重叠: ?
, linewidths=None, verts=None, edgecolors=None, *, data=None, **kwargs) x,y:表示的是大小为(n,)的数组,也就是我们即将绘制散点图的数据点...labelMat.append(float(curLine[-1])) return dataMat,labelMat xArr,yArr=loadDataSet("ex0.txt") 然后我们就可以开始绘制散点图了
标题 在章节1.2中,我做了一张图来表示各类图表的功能性,其中地图和散点图(气泡象限图)我列在了视觉冲击力与数据丰富度最高的位置。...2 散点图 散点图是本人最钟爱的图表,其原因把它与象限结合,可以炮制出一个高度概括的战略图,使其视觉冲击力和数据丰富度倍增。比如Gartner公司在分析各类BI软件的优劣以及前景时所使用的魔力象限。...再比如我们可以把散点图配合波士顿矩阵来分析各类产品的市场地位和对应策略。 ?...2)与添加其他图表一样,添加散点图,X轴为【城市数量】,Y轴为【销售额】,图例为【年份月份】 3)在散点图的分析选项卡中可以添加一个走向线来表示整体趋势。 ?...散点图是表达两个变量之间的关系,这个例子中的城市数量与销售额散点图的意义是为了回答问题:咖啡销售额增长的原因可能是什么?是销售人员能力的增强、品牌认可度的增加还是单纯地因为分店数的扩张?
要引入Seaborn库,使用的命令是: import seaborn as sns 使用Seaborn,我们可以绘制各种各样的图形,如: 分布曲线 饼图和柱状图 散点图 配对图 热力图 在文章中,我们使用从...当我们想要绘制数据集中任意两个数值列之间的关系时,可以使用散点图。此图是机器学习领域的最强大的可视化工具。 让我们看看数据集评级和大小中的两个数字列的散点图是什么样子的。...使用Matplotlib的散点图 使用Seaborn的散点图 在直方图和散点图的代码中,我们将使用sn .joinplot()。 sns.scatterplot()散点图的代码。...使用Seaborn的散点图 在seaborn中使用散点图的主要优点是,我们将同时得到散点图和直方图。...使用Seaborn的配对图 对于非对角视图,图像是两个数值变量之间的散点图 对于对角线视图,它绘制一个柱状图,因为两个轴(x,y)是相同的。 5.热力图 热图以二维形式表示数据。
关系(五)利用python绘制连接散点图 连接散点图(Connected Scatterplot)简介 连接散点图(点线图)是折线图的一种,与散点图类似。...因此连接散点图既能分析相关性,也可分析趋势性。...快速绘制 基于seaborn import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas...通过seaborn绘制多样化的连接散点图 seaborn主要利用lineplot绘制连接散点图,可以通过seaborn.lineplot[1]了解更多用法 import seaborn as sns import...共勉~ 参考资料 [1] seaborn.lineplot: https://seaborn.pydata.org/generated/seaborn.lineplot.html [2] matplotlib.pyplot.plot
3、图表3 散点图1.散点图的实现步骤步骤1 ECharts 最基本的代码结构<!...female", "height": 147.2, "weight": 49.8 },...此处省略...]1假设这个数据是从服务器获取到的, 数组中的每一个元素都包含3个维度的数据: 性别,身高,体重, 而散点图需要的数据是一个二维数组..., 所以我们需要将从服务器获取到的这部分数据,通过代码生成散点图需要的数据var axisData = []for (var i = 0; i < data.length; i++) { var height...type: 'value', scale: true }, series: [{ type: 'scatter', data: axisData, }]}最终的效果如下:图片2.散点图的常见效果气泡图效果要能够达到气泡图的效果...type: 'effectScatter', showEffectOn: 'emphasis', rippleEffect: { scale: 3 } }]}图片结合地图散点图也经常结合地图来进行地图区域的标注
在做精度对比的时候,密度散点图作用很大,特别的数据量大、精度高、相关系数高等情况出现的时候,很容易产生密集散点在聚集的热点,这个热点内的点数无法通过肉眼直观的了解,需要一个辅助的指标来了解聚集程度,通常用...在python的matplotlib.pyplot中,密度散点图的绘制要依靠栅格点(hist2d)而不是(scatter),当然,在清楚绘制密度的时候你也可以使用(scatter)绘制,能得到更好的显示效果
领取专属 10元无门槛券
手把手带您无忧上云