我们就拿论文配图里的误差柱形图来说,真的是PS痕迹满满啊!简单给大家列举一下,可能存在的问题也在图中给大家标注了(仅限个人理解,可能有的误差线就是这么做的呢
https://blog.csdn.net/weixin_39679367/article/details/114631706
lmplot是一种集合基础绘图与基于数据建立回归模型的绘图方法。通过lmplot我们可以直观地总览数据的内在关系。显示每个数据集的线性回归结果,xy变量,利用'hue'、'col'、'row'参数来控制绘图变量。可以把它看作分类绘图依据。
为什么立下这个flag?因为我在各种大会上听腻了人们争论每个月微件(widget)的数量是上升还是下降,或者微件方法X是否比微件方法Y更有效率。
注:条形图只显示平均值(或其他估计值)。但在很多情况下,每个分类变量级别上显示值的分布可能提供更多信息,此时很多其他方法,如一个盒子或小提琴图可能更合适。
本文主要是seaborn从入门到精通系列第3篇,本文介绍了seaborn的绘图功能实现,本文是关系绘图,同时介绍了较好的参考文档置于博客前面,读者可以重点查看参考链接。本系列的目的是可以完整的完成seaborn从入门到精通。重点参考连接
本文主要是seaborn从入门到精通系列第3篇,本文介绍了seaborn的绘图功能实现,本文是分类绘图,同时介绍了较好的参考文档置于博客前面,读者可以重点查看参考链接。本系列的目的是可以完整的完成seaborn从入门到精通。重点参考连接
我们之前探讨了如何使用散点图和回归模型拟合来可视化两个变量之间的关系,以及如何在其他分类变量的层次之间进行展示。 当然,还有一大类问题就是分类数据的问题了? 在这种情况下,散点图和回归模型方法将不起作用。当然,有几个观察可视化这种关系的选择,我们将在本章中讨论。
作者 | Indhumathy Chelliah 编译 | VK 来源 | Towards Data Science
今日分享 Python图表自定义设置 阅读本文大概约5分钟 barplot用法详情 #语法 seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,\ estimator=<function mean>,ci=95, n_boot=1000, units=None, orient=None,\ color=None, palette=No
seaborn内置了十几个示例数据集,通过load_dataset函数可以调用。
案例代码已上传:Github https://github.com/Vambooo/SeabornCN
这章介绍的针对回归类型的散点数据的可视化可能是未来机器学习最直接的助理,这章给我的感悟很多。
前面理论知识上提到了很多的知识点需要计算,作为一个实用主义的博主,怎么可以忍受空谈呢?所以本期就给大家分享如何利用Python对这些知识点进行计算。
Matplotlib虽然提供了丰富而强大的接口用于数据的可视化,但在展现多类数据关系时,需要较多数据处理过程,语句就变得繁琐,因此seaborn针对这类需求,基于matplotlib提供了更高层的接口,擅长统计数据的可视化。seaborn可视化的写法和matplotlib基本相同。其代码框架如下:
在进行业务开发时,可能经常需要根据累计的样本数据,进行判断;并根据判断的结果进行相关的处理。
置信区间是一种对估计不确定性的量化方法,它们可以用来在总体参数(例如平均值mean,就是从总体中的一个独立观测样本上估计而来)上添加一个界限或者可能性。
假定参数是射击靶上 10 环的位置,作一次射击,打在靶心 10 环的位置上的可能性很小,但打在靶子上的可能性就很大,用打在靶上的这个点画出一个区间,这个区间包含靶心的可能性就很大,这就是区间估计的基本思想。
“超级引擎”是一家专门生产汽车引擎的公司,根据政府发布的新排放要求,引擎排放平均值要低于20ppm, (ppm是英文百万分之一的缩写,这里我们只要理解为是按照环保要求汽车尾气中碳氢化合物要低于20ppm)。公司制造出10台引擎供测试使用,每一台的排放水平如下:
渐近性(asymptopia)是样本量接近于无穷大时统计行为的一个术语。渐近统计即大样本统计主要研究当样本量n→∞时统计方法的有关渐进性质。渐近性有助于简单的统计推断和估计,也是频率解释概率的基础。
Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致。但应强调的是,应该把Seaborn视为matplotlib的补充,而不是替代物。
一、置信区间 置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度。 样本均值和总体均值是不同的。一般来说,我们想知道一个总体平均,但我们只能估算出一个样本的平均值。那么我们就希望使用样本均值来估计总体均值。我们使用置信区间这一指标,试图确定我们的样本均值是如何准确地估计总体均值的。
通过线性模型和广义线性模型(GLM),预测函数可以返回在观测数据或新数据上预测值的标准误差(点击文末“阅读原文”获取完整代码数据)。
在关联分析的结果中,对于odd ratio值会给出95% CI的结果,这里的CI其实是confidence interval的缩写,代表置信区间。那么置信区间有什么用呢?
注:点图只显示平均值(或其他估计值)。但在许多情况下,显示每个分类变量级别的值分布可能更具信息性。此时,其他方法如一个盒子或小提琴可能更合适。
我们经常需要获取某个分布的参数,当样本空间特别大或者不方便统计所有样本时,常常会用部分样本来估计系统参数,这个方法称作点估计。常用的点估计方法:
前期,分别对python数据分析三剑客进行了逐一详细入门介绍,今天推出系列第4篇教程:seaborn。这是一个基于matplotlib进行高级封装的可视化库,相比之下,绘制图表更为集成化、绘图风格具有更高的定制性。
今天这篇聊聊统计学里面的置信度和置信区间,好像没怎写过统计学的东西,这篇试着写一写。
http://seaborn.pydata.org/examples/index.html
统计学中有两大分支——描述性统计学(description stats)和推断性统计学(inference stats)。 推断性统计学中,很重要的一点就是区间估计。
导读:这里是A/B Testing的第二篇文章,如果希望了解A/B Testing 实际应用的指标说明,可以只读当前文章这部分。如果你希望了解一些理论基础,可以先看第一篇。
误差幅度(Margin of error):我们从样本统计量估计总体参数时所预测的误差。误差幅度计算公式为:
历史上最早的科学家曾经不承认实验可以有误差,认为所有的测量都必须是精确的,把任何误差都归于错误。后来人们才慢慢意识到误差永远存在,而且不可避免。即使实验条件再精确也无法完全避免随机干扰的影响,所以做科学实验往往要测量多次,用取平均值之类的统计手段去得出结果。
在上一篇文章统计学(2)|A/B测试—理论基础中,我们理清了AB测试的理论基础——假设检验的思想,并且严格推导了为什么现在公司做AB测试基本全都使用
连载系列3:置信度置信的到底是什么? 前两期楼主分别作了均值和拟合优度的专题,今天就来说说置信度。 要说置信度,首先老师肯定会在此前已经介绍过了点估计了,那么引入这个概念的目的自然是为了配合一个叫做区间估计,估算置信区间。通常都是用点估计(点估计一般就是用概率论导出的一个估计值)算出来的数据加上一个变动幅度形成一个区间。在这个变动幅度里,涉及到一个参数就是置信度。 首先我们要问为什么要用区间估计? 咱来看个例子:你打枪打10次,你可以得到一个平均值,比如是8.那么我问你,总体的期望是不是就是8呢?你要说是,
今天,讲一个数据分析或机器学习里非常重要的概念,置信度和置信区间。为什么说置信度和置信区间非常重要?举个例子。
学过统计学的同学应该对置信区间都有了解,置信区间又叫估计区间,是从概率来讲某个随机变量可能取的值的范围。
因此,方差矩阵的近似将基于通过插入参数的估计量而获得。 然后,由于作为渐近多元分布,参数的任何线性组合也将是正态的,即具有正态分布。所有这些数量都可以轻松计算。首先,我们可以得到估计量的方差
最近我们被客户要求撰写关于广义线性模型(GLM)预测置信区间的研究报告,包括一些图形和统计输出。
假设现在测量了12个小鼠体重的值,注意这里只测量了12只小鼠(样本),而不是地球上的每一只小鼠(总体)
在流行病学应用中,疾病通常是人们关注的结局,而疾病的结局通常是二分类变量(即只有患病和无病两种情况)。在这里,我将使用流行病学术语定义具有结局事件的个体为病例(Y=1),将没有结局事件发生的个体作为对照(Y=0)。比率估计的定义与连续型结局变量的定义类似:比率方法对数风险比率估计(二分法IV)= ∆Y/∆X= (y1‘ − y0)/(x1’−x0’) 。其中yi’通常是遗传亚组i中结局事件发生概率的自然对数,或者是“风险比”的自然对数。这里的风险比率(riskratio)是一个泛指,它包括相对危险度(relative risk, RR)或者优势比(odds ratio,OR)。当IV是多分类或者连续型变量时,用于比值估计的系数βY|G^取自Y在G上回归的结果。原则上我们使用的回归模型可以是线性的,其中IV估计值表示暴露单位发生变化后引起的结局事件概率的变化。但是对于二分结果,我们通常首选对数线性或逻辑回归模型,其中IV估计值分别表示暴露单位变化的对数相对风险或对数比值比。对于Logistic模型,估计比值比取决于模型中选择的协变量。
描述性统计偏度和峰度累计值假设检验和区间估计示例1假设检验置信区间示例2假设检验置信区间
单样本检验:检验单个变量的均值与目标值之间是否存在差异,如果总体均值已知,样本均值与总体均值之间差异的显著性检验属于单样本假设检验。
最常见的就是总体方差未知时,估计总体的均值u;总体服从二项分布,估计总体的比例p。如果遇到其他情形下的参数估计,同样只需要按照给定公式计算即可。
正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:
数据集中的数据类型有很多种,除了连续的特征变量之外,最常见的就是类目型的数据类型了,常见的比如人的性别,学历,爱好等。这些数据类型都不能用连续的变量来表示,而是用分类的数据来表示。
在机器学习中的线性回归,一般都会使用scikit-learn中的linear_model这个模块,用linear_model的好处是速度快、结果简单易懂,但它的使用是有条件的,就是使用者在明确该模型是线性模型的情况下才能用,否则生成的结果很可能是错误的。
领取专属 10元无门槛券
手把手带您无忧上云