PaddlePaddle在基础框架、模型建设、分布式训练、预测引擎各个方向上完成多项更新。OP进行了全面完善和优化,模型库新增了自然语言处理、视觉和推荐等领域的大量经典模型,分布式训练能力显著提升,支持千亿规模稀疏参数大规模多机异步训练,预测库易用性和效率提升,移动端预测支持更多模型和更多硬件。详情如下:
Spark的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。文件格式分为:Text文件、Json文件、Csv文件、Sequence文件以及Object文件;文件系统分为:本地文件系统、HDFS、HBASE以及数据库。
1.Kaggle泰坦尼克号项目页面下载数据:https://www.kaggle.com/c/titanic
ChIPseeker包的原创者是南方医科大学Y叔大佬,设计的最初目的是用于ChIP-seq数据的macs peak calling结果分析以及结果可视化,后来逐渐也适用于相关的peak分析(ATAC-seq,DNase-seq)。
文章标题:《A multi-omic single-cell landscape of human gynecologic malignancies》
整理毕业论文数据的时候,想将RNA-seq上游的一些分析结果可视化,主要是比对和定量的结果,通过图表展示反而没有那么直观,经过一番摸索,最后画出了下面的图。
文章标题:《Lipid-related protein NECTIN2 is an important marker in the progression of carotid atherosclerosis: An intersection of clinical and basic studies》
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安全也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~
前文详细介绍如何学习提取的API序列特征,并构建机器学习算法实现恶意家族分类,这也是安全领域典型的任务或工作。这篇文章将讲解如何构建深度学习模型实现恶意软件家族分类,常见模型包括CNN、BiLSTM、BiGRU,结合注意力机制的CNN+BiLSTM。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!
最近在做一个一对多excel类型的报表,如果excel报表数据填错了,要对其进行校验,然后返回给前端,做一个表格显示错误信息,excel报表数据读取的可以参考我上篇博客,链接
区别在于默认情况下前者读取空格作为分隔符,后者读取逗号作为分隔符;前者不把第一行作为标题行,而后者会读作标题行,如下图所示
在业务离线数据分析场景下,往往需要将Mysql中的数据先导出到分布式存储中,如Hive、Iceburg。这个功能实现的方式有很多,但每种方式都会遇到一些问题(包括阿里开源的DataX)。本文就介绍下这个功能的优化之路,并最终给出一个笔者实现的终极方案。
一个包含人类多种癌症的scRNA数据库CancerSCEM,除了常规的分析之外,还提供网站可视化和在线分析(https://ngdc.cncb.ac.cn/cancerscem)
R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。常被用于统计学、计量分析等领域。接下来讲一下我个人认为的R入门知识。
前面学习了spin_lock可以知道,spin_lock对于临界区是不做区分的。而读写锁是对临界区做读写区分,并且度进程进入临界区的几率比较大,因为写进程进入时需要等待读进程退出临界区。而有没有一种方法,可以保护写进程的优先权,使得写进程可以更快的获得锁? 答案是有的,就是顺序锁。
数据一般都是存储在纯文本文件当中,存储的形式多种多样。本文,我会介绍如何在Clojure中读取和写入这些数据。
通过一段时间的学习和了解以及前面几篇关于Slick的讨论后对Slick这个函数式数据库编程工具有了些具体的了解。回顾我学习Slick的目的,产生了许多想法,觉着应该从实际的工作应用角度把我对Sl
Parquet 是一种开源文件格式,用于处理扁平列式存储数据格式,可供 Hadoop 生态系统中的任何项目使用。 Parquet 可以很好地处理大量复杂数据。它以其高性能的数据压缩和处理各种编码类型的能力而闻名。与基于行的文件(如 CSV 或 TSV 文件)相比,Apache Parquet 旨在实现高效且高性能的平面列式数据存储格式。
akka-stream原则上是一种推式(push-model)的数据流。push-model和pull-model的区别在于它们解决问题倾向性:push模式面向高效的数据流下游(fast-dow
上一期我们介绍了如何人工进行亚群注释,本期我们来介绍单细胞转录组数据的自动注释方法:SingleR。
如图所示,参数服务器主要包含Server和Worker两个部分,其中Server负责参数的存储和更新,而Worker负责训练。简单来说,参数服务器训练的基本思路:当训练数据过多,一个Worker训练太慢时,可以引入多个Worker同时训练,这时Worker之间需要同步模型参数。直观想法是,引入一个Server,Server充当Worker间参数交换的媒介。当模型参数过大以至于单机存储空间不足时或Worker过多导致一个Server是瓶颈时,就需要引入多个Server。
好的书籍是人类进步的阶梯,但有些人却找不到优秀的阶梯,为此我们开设了书籍翻译这个栏目,作为你学习之路的指路明灯;分享国内外优秀书籍,弘扬分享精神,做一个知识的传播者。
关于深度学习,每个人都有自己的看法。有人说就是炼丹,得个准确率召回率什么的,拿到实际中,问问为什么,都答不上来。各种连代码都没写过的人,也纷纷表示这东西就是小孩堆积木,然后整个大功耗的服务器跑上几天,调调参数。然后每个实验室招生,都说自己是做什么深度学习,机器 学习,大数据分析的,以此来吸引学生。可是可是,他们实验室很可能连一块 GPU 都没有。 对于像我这样的渣渣来说,深度学习的乐趣不在于推导那么几个公式,而在于你在做情感分析的时候,RMSE小了,准确率高了;你在做机器翻译的时候,英文句子准确地变成了地地
按照前文所述,本篇开始Pandas和Spark常用数据处理方法对比系列。数据处理的第一个环节当然是数据读取,所以本文就围绕两个框架常用的数据读取方法做以介绍和对比。
在前文中,我们直接用API导入了数据,但是现实中,搬砖环境千变万化,我们总是要拿自己的数据的处理的:
最近在做Excel导入功能,是一种一对多的数据,涉及到合并单元格的,考虑到使用poi去学,要自己去做处理,所以,看看有什么开源的框架,找到两个合适的框架,一个是easypoi是能支持这种的,这个框架提供了特定注解;还有一种是EasyExcel,阿里开源的,不过功能相对没easypoi齐全,比如这种合并单元格数据导入,就没有特定的注解,不过通过搜索资料,是可以实现的,不过要自己写工具类做处理,工具类整理自网上教程
关于深度学习,每个人都有自己的看法。有人说就是炼丹,得个准确率召回率什么的,拿到实际中,问问为什么,都答不上来。各种连代码都没写过的人,也纷纷表示这东西就是小孩堆积木,然后整个大功耗的服务器跑上几天,调调参数。然后每个实验室招生,都说自己是做什么深度学习,机器 学习,大数据分析的,以此来吸引学生。可是可是,他们实验室很可能连一块 GPU 都没有。 小时候,我把两个5号电池连在一块,然后用导线把正负极连起来,在正极的地方接个小灯泡,然后灯泡就亮了,这时候我就会高兴的不行。家里的电风扇坏了,把风扇拆开后发现里边
在上篇博客(geotrellis使用初探)中简单介绍了geotrellis-chatta-demo的大致工作流程,但是有一个重要的问题就是此demo如何调取数据进行瓦片切割分析处理等并未说明,经过几天的调试、分析、源代码研读终于大致搞明白了其数据调取方式,下面简单介绍。 经过调试发现系统第一次调用数据的过程就是系统启动的时候调用了initCache方法,明显可以看出此方法是进行了数据缓存,那必然牵扯到数据的调取,整个过程清晰明了,只新建了一个RasterSource类,并调用了相关方法。明显数据调取过程应当
文章标题:《Single-cell RNA transcriptome analysis of CNS immune cells reveals CXCL16/CXCR6 as maintenance factors for tissue-resident T cells that drive synapse elimination》
文章标题:《Single-cell atlas of diverse immune populations in the advanced biliary tract cancer microenvironment》
推荐一款物联网设备通信协议实现客户端,包括了主流PLC通信读取、ModBus协议、Bacnet协议等常见的工业通信协议。
这段时间在百度的AIStudio上学习了MNIST数据集上的手写数字识别的课程,就简单做一下笔记吧!
导读:无论数据分析的目的是什么,将数据导入R中的过程都是不可或缺的。毕竟巧妇难为无米之炊。
前面写了几篇博客介绍了Geotrellis的简单使用,具体链接在文后,今天我主要介绍一下Geotrellis在数据处理的过程中需要注意的细节,或者一些简单的经验技巧以供参考。 一、直接操作本地Geotiff 如果不想将tiff数据切割成瓦片存放到集群中,也可以直接使用Geotrellis操作本地geotiff文件,可以直接使用SinglebandGeoTiff读取单波段的tiff,使用MultibandGeoTiff读取多波段tiff。 val geotiff = SinglebandG
在 批处理概念 中介绍一个标准的批处理分为 Job 和 Step。本文将结合代码介绍在Step中Reader、Processor、Writer的实际使用。
FunDA的设计目标就是把后台数据库中的数据搬到内存里,然后进行包括并行运算的数据处理,最后可能再对后台数据库进行更新。如果需要把数据搬到内存的话,那我们就必须考虑内存是否能一次性容纳所有的数
当系统中存在读取热点 Region 导致 leader 资源紧张成为整个系统读取瓶颈时,启用 Follower Read 功能可明显降低 leader 的负担,并且通过在多个 follower 之间均衡负载,显著地提升整体系统的吞吐能力。本文主要介绍 Follower Read 的使用方法与实现机制。
由于我们不能将大量数据一次性放入网络中进行训练,所以需要分批进行数据读取。这一过程涉及到如何从数据集中读取数据的问题,pytorch提供了Sampler基类【1】与多个子类实现不同方式的数据采样。子类包含:
在Android应用中,你可以通过服务(Service)来实现蓝牙数据读取。以下是一个简单的示例,演示如何创建一个Android服务以连接到蓝牙设备并读取数据。在实际应用中,你需要确保你的应用具备蓝牙权限,并使用合适的蓝牙库进行连接和数据读取。
文:陈之炎 本文约4400字,建议阅读10+分钟本文对BERT模型预训练任务的源代码进行了详细解读,在Eclipse开发环境里,对BERT 源代码的各实现步骤分步解析。 BERT模型架构是一种基于多层双向变换器(Transformers)的编码器架构,在tensor2tensor库框架下发布。由于在实现过程当中采用了Transformers,BERT模型的实现几乎与Transformers一样。 BERT预训练模型没有采用传统的从左到右或从右到左的单向语言模型进行预训练,而是采用从左到右和从右到左的双向语言
从总体上看:akka-stream是由数据源头Source,流通节点Flow和数据流终点Sink三个框架性的流构件(stream components)组成的。这其中:Source和Sink是
接入文档链接:https://cloud.tencent.com/document/api/441/19499
上篇描述的kafka案例是个库存管理平台。是一个公共服务平台,为其它软件模块或第三方软件提供库存状态管理服务。当然,平台管理的目标必须是共享的,即库存是作为公共资源开放的。这个库存管理平台是一个Kafka消费端独立运行的软件。kafka的生产方即平台的服务对象通过kafka生产端producer从四面八方同时、集中将消息写入kafka。库存管理平台在kafka消费端不间断监控kafka里新的未读过的消息并及时读取,解析消息获取发布者对库存管理的指令,然后按指令更新库存状态。
1、FileReader概述 FileReader 对象允许Web应用程序异步读取存储在用户计算机上的文件(或原始数据缓冲区)的内容,使用 File 或 Blob 对象指定要读取的文件或数据。 其中File对象可以是来自用户在一个<input>元素上选择文件后返回的FileList对象,也可以来自拖放操作生成的DataTransfer对象,还可以是来自在一个HTMLCanvasElement上执行mozGetAsFile()方法后返回结果。 2、FileReader接口方法 方法名 参数 描述 r
[ 导读 ]无论数据分析的目的是什么,将数据导入R中的过程都是不可或缺的。毕竟巧妇难为无米之炊。utils包是R语言的基础包之一。这个包最重要的任务其实并不是进行数据导入,而是为编程和开发R包提供非常实用的工具函数。使用utils包来进行数据导入和初步的数据探索也许仅仅只是利用了utils包不到1%的功能,但这1%却足以让你在学习R语言时事半功倍。
机器之心经授权转载 作者:胡晓曼 本文主要介绍了百度的深度学习开源框架PaddlePaddle的数据预处理过程,创建一个reader读取数据,一行代码搞定数据的输入、混洗和批量读取。本文作者胡晓曼是一名高级算法工程师,热衷写通俗易懂的深度学习入门文章。 PaddlePaddle 的基本数据格式 根据官网的资料,总结出 PaddlePaddle 支持多种不同的数据格式,包括四种数据类型和三种序列格式: 四种数据类型: dense_vector:稠密的浮点数向量。 sparse_binary_vector:稀疏
我把表观调控数据分析,拆分成为了13张图,分别录制为13个视频,即将免费发布在B站,这个期间我们的视频编辑师还在兢兢业业的奋斗,希望这13张图能带领大家学会表观调控数据分析的一般流程, 然后应用到自己的课题哈!
今天给大家介绍谢志教授等人发表在Genome Biology上的一篇文章“DISC: a highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semisupervised deep learning ”。
Tensorflow dataloader 相关调研;数据读取是训练的开始,是非常关键的一步;下面是调研时搜集到的一些相关链接:
领取专属 10元无门槛券
手把手带您无忧上云