线性回归是简单易用的机器学习算法,scikit-learn是python强大的机器学习库。 本篇文章利用线性回归算法预测波士顿的房价。波士顿房价数据集包含波士顿郊区住房价值的信息。...LinearRegressionX = bos.drop('PRICE', axis=1)lm = LinearRegression()lm lm.fit(X, bos.PRICE) print('线性回归算法...w值:', lm.coef_)print('线性回归算法b值: ', lm.intercept_) import matplotlib.font_manager as fmmyfont = fm.FontProperties...针对整个数据集拟合线性回归模型,并计算均方误差。...思考环节 1 对数据集分割成训练数据集和测试数据集 2 训练数据集训练线性回归模型,利用线性回归模型对测试数据集进行预测 3 计算训练模型的MSE和测试数据集预测结果的MSE 4 绘制测试数据集的残差图
scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析,本文就对这些类库的使用做一个总结,重点讲述这些线性回归算法库的不同和各自的使用场景。 ...线性回归的目的是要得到输出向量\(\mathbf{Y}\)和输入特征\(\mathbf{X}\)之间的线性关系,求出线性回归系数\(\mathbf\theta\),也就是 \(\mathbf{Y = X...损失函数的不同,损失函数的优化方法的不同,验证方法的不同,就形成了不同的线性回归算法。scikit-learn中的线性回归算法库可以从这这三点找出各自的不同点。...不过他不是编程里面的多线程,而是指多个线性回归模型共享样本特征,但是有不同的回归系数和特征输出。具体的线性回归模型是\(\mathbf{Y = XW}\)。其中X是mxn维度的矩阵。...以上就是scikit-learn中线性回归的一个总结,希望可以帮到朋友们。 (欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)
5.将标准线图层复制到当前页面,ctrl+C,V就行了。将标准线的网格删除。将线移动到该有的位置即可。对周围的字体大小等修正后即可。
对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。 1....:) 这里我们用UCI大学公开的机器学习数据来跑线性回归。 ...也不用我们搞,后面scikit-learn在线性回归时会先帮我们把归一化搞定。 好了,有了这个csv格式的数据,我们就可以大干一场了。 3. ...运行scikit-learn的线性模型 终于到了临门一脚了,我们可以用scikit-learn的线性模型来拟合我们的问题了。scikit-learn的线性回归算法使用的是最小二乘法来实现的。...以上就是用scikit-learn和pandas学习线性回归的过程,希望可以对初学者有所帮助。
内容概要 如何使用pandas读入数据 如何使用seaborn进行数据的可视化 scikit-learn的线性回归模型和使用方法 线性回归模型的评估测度 特征选择的方法 作为有监督学习,分类问题是预测类别结果...,而回归问题是预测一个连续的结果。...线性回归模型 优点:快速;没有调节参数;可轻易解释;可理解 缺点:相比其他复杂一些的模型,其预测准确率不是太高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好的对这种数据建模...的线性回归 In [15]: from sklearn.linear_model import LinearRegressionlinreg = LinearRegression()linreg.fit...特征选择 在之前展示的数据中,我们看到Newspaper和销量之间的线性关系比较弱,现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?
ggplot(data = )+ (mapping=aes()) #代表着模版不是具体的代码 #代表画图的函数...mapping = aes(x = cut)) ggplot(data = diamonds) + stat_count(mapping = aes(x = cut)) #这两个函数效果一样geom开头是画图函数
手写线性回归 使用numpy随机生成数据 import numpy as np import matplotlib.pyplot as plt # 生成模拟数据 np.random.seed(42)...# 可视化数据 plt.scatter(X, y) plt.xlabel('X') plt.ylabel('y') plt.title('Generated Data') plt.show() 定义线性回归参数并实现梯度下降...对于线性拟合,其假设函数为: h_θ(x)=θ_1x+θ_0 这其中的 θ 是假设函数当中的参数。...) plt.ylabel('y') plt.legend() plt.title('Linear Regression using Gradient Descent') plt.show() 实现多元线性回归...多元线性回归的梯度下降算法: θ_j≔θ_j−α\frac{∂J(θ)}{∂θ_j} 对 \frac{∂J(θ)}{∂θ_j} 进行等价变形: θ_j≔θ_j−α\frac{1}{m}∑_{i=1}^
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
【导读】本文是一篇专门介绍线性回归的技术文章,讨论了机器学习中线性回归的技术细节。线性回归核心思想是获得最能够拟合数据的直线。...文中将线性回归的两种类型:一元线性回归和多元线性回归,本文主要介绍了一元线性回归的技术细节:误差最小化、标准方程系数、使用梯度下降进行优化、残差分析、模型评估等。在文末给出了相关的GitHub地址。...Linear Regression — Detailed View 详细解释线性回归 线性回归用于发现目标与一个或多个预测变量之间的线性关系。...有两种类型的线性回归 – 一元线性回归(Simple)和多元线性回归(Multiple)。 一元线性回归 ---- 一元线性回归对于寻找两个连续变量之间的关系很有用。...线性回归核心思想是获得最能够拟合数据的直线。拟合度最高的直线是总预测误差(所有数据点)尽可能小的直线。误差是用在原始点以及预测点之间的距离来衡量。
cols= ['LSTAT','AGE','DIS','CRIM','MEDV','TAX','RM'] sns.pairplot(df[cols],size=2.5) plt.show() 实现线性回归模型通过梯度下降法计算回归参数...,实现线性回归模型 importnumpyasnp classLinerRegressionByMySelf(object): def__init__(self,learn_rate=0.001,epoch...=20): """ learn_rate : 学习率 epoch : 迭代次数 """ self.learn_rate=learn_rate self.epoch=epoch pass deffit(self...LinerRegressionByMySelf() model.fit(x_Standard,y_Standard) plt.plot(range(1,model.epoch+1),model.cost_list)# 画图...y_line_fit=linear_model.predict(x_fit)# 计算线性回归预测值 linear_r2=r2_score(y,linear_model.predict(x))# 计算线性回归相关系数平方
线性回归 下面我们用一个预测房价的例子来说明。...由此我们可以看出,房价和人口百分比成反比,与房间数成正比 通过梯度下降法计算回归参数,实现线性回归模型 关于梯度下降可以参看这篇文章 import numpy as np class LinearRegressionByMyself...(object): def __init__(self, Learn_rate=0.001, epoch=20): self.Learning_rate = Learn_rate...使用sklearn实现线性回归模型 from sklearn.linear_model import LinearRegression sk_model = LinearRegression() sk_model.fit...(X, y, sk_model) plt.xlabel('Percentage of the population') plt.ylabel('House price') plt.show() 评估线性回归模型
线性模型、线性回归与广义线性模型 逻辑回归 工程应用经验 数据案例讲解 1....线性模型、线性回归与广义线性回归 1.1 线性模型 image 线性模型(linear model)试图学得一个通过属性的线性组合来进行 预测的函数: image 向量形式: image 简单...对于样本 image 如果我们希望用线性的映射关系去逼近y值 可以得到线性回归模型 image 有时候关系不一定是线性的 如何逼近y 的衍生物?...比如令 image 则得到对数线性回归 (log-linear regression) 实际是在用 image 逼近y image 要点总结 线性回归 线性映射关系 yˆ=θTX 损失函数...MSE:评估与标准答案之间的差距 梯度下降 沿着损失函数梯度方向逐步修正参数 学习率影响 模型状态 欠拟合 过拟合 广义线性回归 对线性映射的结果进行数学变换,去逼近y值 指数(exp)或者对数
2、线性拟合 #!...learning_rate = 0.01 training_epochs = 100 # 初始化线性模拟数据 x_train = np.linspace(-1, 1, 101) y_train =...将输入和输出节点设置为占位符,而真实数值将传入 x_train 和 y_train X = tf.placeholder("float") Y = tf.placeholder("float") # 将回归模型定义为...# 定义成本函数 y_model = model(X, w) #tf.square()是对每一个元素求平方 cost = tf.square(Y - y_model) # 有了线性模型、成本函数和数据
本文记录岭回归角度进行线性回归的方法。...问题描述 考虑一个线性模型 {y}=f({\bf{x}}) 其中y是模型的输出值,是标量,\bf{x}为d维实数空间的向量 线性模型可以表示为: f(\bf{x})=\bf{w} ^Tx,w\in...\mathbb{R} 线性回归的任务是利用n个训练样本: image.png 和样本对应的标签: Y = [ y _ { 1 } \cdots \quad y _ { n } ] ^ { T } \quad...y \in \mathbb{R} 来预测线性模型中的参数 \bf{\omega},使得模型尽可能准确输出预测值 线性回归 / 岭回归 岭回归就是带有L_2正则的线性回归> 之前最小二乘法的损失函数...: L(w)= w^{T} X{T{\prime}} X w-2 w^{T} X^{T} Y+Y^{T} Y 岭回归的代价函数: image.png 上式中 \lambda 是正则化系数,现在优化的目标就转为
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系。...回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题转化为分类问题,回归分析是一个有监督学习问题。...线性其实就是一系列一次特征的线性组合,在二维空间中是一条直线,在三维空间中是一个平面,然后推广到n维空间,可以理解高维广义线性吧。线性回归实现和计算都比较简单,但是不能拟合非线性数据。...predict, import numpy as np from sklearn.linear_model import LinearRegression # sklearn框架,lingear_model线性模型
设:$$y=ax_1+b_x2$$ 这公式那么一写阿,瞅起来像是一个线性模型,简单理解也就是一条线嘛。...有了公式,现在回头来看看真实的问题和真实的数据该怎么处理: House Prices: Advanced Regression Techniques 房价:先进的回归技术 housing = pd.read_csv...、如果含有缺失值,对缺失值进行填充 2.判断该列数据是不是数值 2.1、如果是数值继续后续操作 2.2、如果不是数值,定义对应关系,将数据对应到数值 3.去除异常数据 4.绘制散点图和线性关系...submisson.csv", index=False) 我们把submission提交到Kaggle的平台上,看看能获得什么样的分数: [在这里插入图片描述] 结果显示并不是很好,当然,我们还有好多因素没有考虑,不过,线性回归
统计学习方法 算法(线性回归) 策略(损失函数) 优化(找到最小损失对于的W值) 线性回归 寻找一种能预测的趋势 线性关系 二维:直线关系 三维:特征,目标值,平面当中 线性关系定义 h(w)=w0...= std_y.inverse_transform(lr.predict(x_test)) # std_y.inverse_transform() 转换数据 print(lr.coef_) # 显示回归系数...梯度下降预测结果返回的是一维数组 需要转换 sdg_p = std_y.inverse_transform(sgd.predict(x_test).reshape(-1,1)) print(sgd.coef_) # 显示回归系数
理论 回归问题通常用于连续值的预测,可以总结为给定x, 想办法得到f(x),使得f(x)的值尽可能逼近对应x的真实值y。...假设,输入变量x与输出值y成线性关系,比如随着年龄(x)增大, 患癌症的概率(y)也会逐渐增大。
线性回归 线性回归预测函数: 逻辑回归预测函数: 线性回归损失函数: 逻辑回归损失函数: MSE直接应用到LR中会导致损失函数变成非凸函数,所以我们加入log让损失函数变成了凸函数...二项分布中): 非二项分布: 损失函数(经验损失+结构损失): 两者损失函数求导后,除了假设函数不一样,表示形式是一样的: 损失函数中参数倍数变化并不会影响最优值的最终结果 1.1 逻辑回归...sigmiod 其中\theta是收敛之后得到的结果 根据sigmoid曲线,h_{\theta}≥0时,置为1;否则置为0 1.1.1.1 决策边界 1.1.2 代价函数 当我们把线性回归的代价函数放到逻辑回归上使用时...分析 化简 得到如下结果,使用了==极大似然法==(能够在统计学中能为不同模型快速寻找参数),并且结果是凸函数 参数梯度下降: ==可以发现,求导后线性回归和逻辑回归的公式是一样的,但是他们的假设函数...训练多个逻辑回归分类器,然后将输入放到各分类器中,将输入归类为得分值最大的类别即可 1.4 过拟合和欠拟合解决 1.4.1 过拟合 适当减少多余的参数 使用正则化,适当减少参数维度(阶/次方)/大小
于是我又找到吴恩达的Marchine Learning课程,再次学习了线性回归和Logistic回归。...Machine Leanring这门课程是先从线性回归讲起,然后再介绍的Logistic回归,个人感觉这样的次序更容易理解。...《机器学习实战》这本书也有线性回归的内容,不过放在比较后面的第8章,而且书中给出的解法是直接求解法,并没有采用梯度下降算法。...线性回归 在[机器学习实战札记] Logistic回归中,我们了解到回归的定义,其目的是预测数值型的目标值,最直接的方法是依据输入写出一个目标值的计算公式。...一旦有了这些回归系统,再给定输入,做预测就非常容易。 回归中使用得最多的就是线性回归,而非线性回归问题也可以经过变化,简化为线性回归问题。比如有如下图所示的数据集: ? 可以通过引入高阶多项式: ?
领取专属 10元无门槛券
手把手带您无忧上云