首页
学习
活动
专区
圈层
工具
发布

sklearn应用线性回归算法

下面介绍 sklearn 中常用的算法库: ·linear_model:线性模型算法族库,包含了线性回归算法,以及 Logistic 回归算法,它们都是基于线性模型。...实现线性回归算法 下面我们是基于 sklearn 实现线性回归算法,大概可以分为三步,首先从 sklearn 库中导入线性模型中的线性回归算法,如下所示: from sklearn import linear_model...调用 predict() 预测输出结果, “x_”为输入测试数据,如下所示: model.predict(x_) 你可能会感觉 so easy,其实没错,使用 sklearn 算法库实现线性回归就是这么简单...线性回归步骤 通过上述代码了解了如何使用 Python sklearn 实现线性回归,下面从总整体出发再次审视该算法:掌握线性回归算法的具体步骤。...其实线性回归主要解决了以下三个问题: 第一,为假设函数设定了参数 w,通过假设函数画出线性“拟合”直线。 第二,将预测值带入损失函数,计算出一个损失值。

68210

机器学习sklearn线性回归

回归算法是机器学习的一个基础算法,简单的就是线性回归,还有非线性回归。本节我们讲解简单的线性回归。 线性回归就是用直线来描述两个变量之间的线性关系。...而线性回归呢跟这个类似,只不过这里有无穷多个点,我们知道一条直线一般是不能同时通过这无穷多个点的,所以呢,线性回归要求这条直线像下面的图所显示的那样能大致通过这些点就可以。...当我们定义线性回归的损失函数是每个点到直线的距离的平方和时,这种线性回归算法称之为最小二乘法。...') # 画点 plt.show() # 显示图形窗口 于是画图窗口打开了,我们看到 接下来我们开始使用sklearn的线性回归模块 # -*- coding: utf-8 -*- import random...例子中拟合的是一条直线,实际应用中拟合的则是一个多维平面。所以代码中我们对输入xs做了转换[[x] for x in xs]将输入x转换成多维形式,否则模型不接受输入。

69810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    sklearn系列之----线性回归

    原理 线性回归,原理很简单,就是拟合一条直线使得损失最小,损失可以有很多种,比如平方和最小等等; y是输出,x是输入,输出是输入的一个线性组合。...y.shape ——>(1,) 输入:x.shape——->(m,1) #m是一个数字 大家记得不要把形式弄错啦,不然可就走不起来了; 下面是个最简单的例子: >>> from sklearn...import linear_model #导入线性模型 >>> clf = linear_model.LinearRegression() #使用线性回归 >>> clf.fit ([[0, 0],...set和test set diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # 使用线性回归...plt.xticks(()) plt.yticks(()) plt.show() 可以看出,使用还是很简单的,就是准备好数据集: regr = linear_model.LinearRegression() #使用线性回归

    96570

    sklearn调包侠之线性回归

    线性回归原理 如图所示,这是一组二维的数据,我们先想想如何通过一条直线较好的拟合这些散点了?直白的说:尽量让拟合的直线穿过这些散点(这些点离拟合直线很近)。...目标函数(成本函数) 要使这些点离拟合直线很近,我们需要用数学公式来表示: 梯度下降法 之前在讲解回归时,是通过求导获取最小值,但必须满足数据可逆,这里通常情况下使用梯度下降法,也就是按着斜率方向偏移。...,容易导致欠拟合,我们可以增加特征多项式来让线性回归模型更好地拟合数据。...其重要参数有: degree:多项式特征的个数,默认为2 include_bias:默认为True,包含一个偏置列,也就是 用作线性模型中的截距项,这里选择False,因为在线性回归中,可以设置是否需要截距项...简单线性回归 from sklearn.linear_model import LinearRegression model2 = LinearRegression(normalize=True) model2

    58310

    基于梯度下降法的——线性回归拟合

    本文转载自数据分析挖掘与算法,禁二次转载 阅读本文需要的知识储备: 高等数学 运筹学 Python基础 引出梯度下降 对于,线性回归问题,上一篇我们用的是最小二乘法,很多人听到这个,或许会说:天杀的最小二乘法...当然了,解决线性回归问题的梯度下降是基于误差平方和,只有二次项,不存在多峰问题。 梯度下降的理论基础 我们都现在都知道这个人的任务是什么了:每次要找一个最好的下山方向。...(1)、用到的函数: 不同点的梯度函数,海赛矩阵函数,迭代主函数 这里用到的比如点乘函数,在第一篇《基于最小二乘法的——线性回归拟合(一)》里面有我是放在一个脚本里面的,所以这里没有写两次,你们可以把两个脚本放在一起是没有问题的...44else: 45 print('在0.05置信水平下,该线性拟合效果不佳!')...62 else: 63 print('在0.05置信水平下,该线性拟合效果不佳!')

    1.4K10

    R方和线性回归拟合优度

    p=6267  R方由协变量X解释的结果Y的变化比例通常被描述为拟合优度的度量。这当然看起来非常合理,因为R平方测量观察到的Y值与模型的预测(拟合)值的接近程度。...Y的(正确的)线性回归模型,其中X作为协变量: summary(mod1) Call: lm(formula = y ~ x) Residuals: Min 1Q Median...因此,和以前一样,我们可以从拟合简单的线性回归模型开始,该模型假设Y的期望是X的线性函数: Call: lm(formula = y ~ x) Residuals: Min 1Q...此外,我们看到我们得到的R平方值为0.46,再次表明X(包括线性)解释了Y中相当大的变化。我们可能认为这意味着我们使用的模型,即期望Y在X中是线性的,是合理的。...特别地,我们看到对于X的低值和高值,拟合值太小。这显然是Y的期望取决于exp(X)这一事实的结果,而我们使用的模型假设它是X的线性函数。

    2.5K20

    基于sklearn的线性回归器理论代码实现

    理论 线性回归器 相比于线性分类器,线性回归器更加自然。...回归任务的label是连续的变量(不像分类任务label是离散变量),线性回归器就是直接通过权值与输入对应相乘再相加直接计算出结果$$y = w^{T}*x + b$$ 其中,w为权值,x是输入,y是输出...回归器的优化 与分类器类似,回归器也是通过梯度优化的,一般来说分类问题常用均方误差函数来标定结果的质量(即代价函数)$$L(w,b) = \sum (y - y')$$ 其中y为模型输出,y'为期望值...reshape(-1) y_test = ss_y.transform(y_test.reshape(-1,1)).reshape(-1) print(y_train.shape) (379,) 模型训练 线性回归模型...(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False) SGD回归模型 from sklearn.linear_model import

    1.1K70

    Python机器学习:数据拟合与广义线性回归

    机器学习中的预测问题通常分为2类:回归与分类。 简单的说回归就是预测数值,而分类是给数据打上标签归类。 本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。...import Pipeline from sklearn.linear_model import LinearRegression from sklearn.preprocessing import...这样的思想应用在了岭(Ridge)回归(使用L2正则化)、Lasso法(使用L1正则化)、弹性网(Elastic net,使用L1+L2正则化)等方法中,都能有效避免过拟合。...下面以岭回归为例看看100次多项式的拟合是否有效。...另外值得注意的是,使用岭回归之类的惩罚模型后,1次和2次多项式回归的R2值可能会稍微低于基本线性回归。

    1.4K60

    使用局部加权线性回归解决非线性数据的拟合问题

    对于回归而言,有线性模型和非线性模型两大模型,从名字中的线性和非线性也可以直观的看出其对应的使用场景,但是在实际分析中,线性模型作为最简单直观的模型,是我们分析的首选模型,无论数据是否符合线性,肯定都会第一时间使用线性模型来拟合看看效果...当实际数据并不符合线性关系时,就会看到普通的线性回归算法,其拟合结果并不好,比如以下两个拟合结果 线性数据: ? 非线性数据: ?...同样应用线性回归模型,可以看到数据本身非线性的情况下,普通线性拟合的效果非常差。对于这样的情况,我们有两种选择 1....同时,相比普通的线性回归,局部加权回归的计算量也是非常大,需要对每一个样本进行遍历,计算样本权重矩阵,并求解回归系数,再拟合新的预测值,样本越多,计算量越大。...可以看到,K=1时,就是一个整体的普通线性回归;当k=0.01是拟合效果很好,当k=0.003时,拟合结果非常复杂,出现了过拟合的现象。

    2.4K11

    Python+sklearn使用线性回归算法预测儿童身高

    问题描述:一个人的身高除了随年龄变大而增长之外,在一定程度上还受到遗传和饮食以及其他因素的影响,本文代码中假定受年龄、性别、父母身高、祖父母身高和外祖父母身高共同影响,并假定大致符合线性关系。...import copy import numpy as np from sklearn import linear_model def linearRegressionPredict(x, y):...lr = linear_model.LinearRegression() # 拟合 lr.fit(x, y) return lr # 儿童年龄,性别(0女1男),父亲身高,母亲身高,祖父身高...np.array([60, 90, 100, 110,\ 130, 140, 150, 164,\ 160, 163, 168]) # 根据已知数据拟合最佳直线的系数和截距...lr = linearRegressionPredict(x, y) # 查看最佳拟合系数 print('k:', lr.coef_) # 截距 print('b:', lr.intercept_)

    1.9K30

    R语言非线性拟合之多项式回归

    前面用了2篇推文,帮大家梳理了从线性拟合到非线性拟合的常用方法,包括多项式回归、分段回归、样条回归、限制性立方样条回归,以及它们之间的区别和联系,详情请看: 多项式回归和样条回归1 多项式回归和样条回归...# 拟合线性回归 f <- lm(population ~ year, data = USPop) # 画出原来的数据 plot(population ~ year, data = USPop) #...添加拟合线 lines(USPop$year, fitted(f), col = "blue") 图中这条蓝色的线就是线性拟合的线,很明显,对数据的拟合很差。...那我们应该用什么方法拟合这个关系呢? 根据之前的两篇推文,拟合非线性关系有非常多的方法,至少有3种: 多项式回归 分段回归 样条回归 我们这里先介绍多项式回归。...,所以此时线性回归肯定不合适。

    1.1K10

    机器学习——过拟合问题(线性回归+逻辑斯特回归的正则化推导)

    1.前言前面已经推导过线性回归和逻辑斯特回归的梯度下降算法。...线性回归的梯度下降算法:https://blog.csdn.net/qq_30232405/article/details/104153928逻辑斯特回归的梯度下降算法:https://blog.csdn.net.../qq_30232405/article/details/104486826它们各自的梯度下降算法公式为:线性回归:逻辑斯特回归:其中g为sigmoid函数2.过拟合问题及其解决方法如上图,左图展示了一个拟合曲线不能很好的拟合数据...对于 多项式回归,当次数选取较低时,我们的 训练集误差 和 交叉验证集误差 都会很大;当次数选择刚好时,训练集误差 和 交叉验证集误差 都很小;当次数过大时会产生过拟合,虽然 训练集误差 很小,但 交叉验证集误差...2.3 线性回归的正则化根据公式(2-2),当使用梯度下降算法更新参数\theta时,\frac{1}{2m} \sum_i^{m}(h_\theta(x^{(i)}) - y^{(i)})^2对\theta_j

    33720

    R 语言线性回归应用:拟合 iOS 录音波形图

    我们要解决这样的问题:拟合一个公式,输入一段 wav 采样的均方根值 prmsp_{rms}p​rms​​,输出估算的分贝 Lp~\tilde{L_p}​L​p​​​~​​ ,使其近似等于 averagePowerForChannel...我们通过收集数据,建立线性回归模型,调参,验证等步骤,成功得到了波形图还原方程: Lp~=−80+6log2prms dB\tilde{L_p} = -80 + 6 \log_{2} {p_{rms}}...建立线性回归模型 考虑分贝计算公式 wiki 用 R 语言建立线性回归模型,拟合 formula = y ~ log(x) dat <- read.csv('data/input.csv') model...<- lm(y ~ log(x,2), dat) summary(model) 对一段 87秒的录音,拟合残差(residuals)和系数(coeeficient)为: Call: lm(formula...我们用 python 读取 wav,通过上述方程计算分贝波形图,不断调整参数,使拟合波形(左上图)更加接近目标(右上图)。 最终得到还原方程:

    2.5K70

    Python,sklearn多项式回归处理非线性问题

    参考链接: Python | 多项式回归的实现 from sklearn.preprocessing import PolynomialFeatures as PF from sklearn.linear_model...) #设置随机数种子 X = rnd.uniform(-3, 3, size=100)  y = np.sin(X) + rnd.normal(size=len(X)) / 3 #将X升维,准备好放入sklearn...中  X = X.reshape(-1,1) # 要对X进行升维,sklearn不接受一维 X.shape  Out[26]: (100, 1)   #创建测试数据,均匀分布在训练集X的取值范围内的一千个点...().fit(X, y)    #对训练数据的拟合 LinearR.score(X,y)   Out[28]: 0.5361526059318595   #对测试数据的拟合 LinearR.score(...line,np.sin(line))  Out[29]: 0.6800102369793312   #多项式拟合,设定高次项 d=5 #进行高此项转换 poly = PF(degree=d) X_ =

    95300

    机器学习之线性回归(最小二乘法手写+sklearn实现)

    线性模型(Linear Model)就是试图用一个线性组合来描述一个示例的某种综合得分: 一般我们将其写成向量形式: 其中 。...那么每一个人都能用一个向量来表示: 性别性格年龄外貌财富 那么判断一个人是否是好的配偶,我们可以定义以下线性模型: 性别性格年龄外貌财富 最终,得分越高就能表明这个人更有可能是一个好的配偶。...二、线性回归 线性回归试图学习到一个线性模型以尽可能准确地预测实值输出标记。...那么我们最终的目标就是:寻找参数 和 ,使得 和 对这10000人的预测值与真实的回归目标(已经给出的 )之间的均方误差最小。...sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error sklearn中有专门的线性模型包linear_model

    75020
    领券