首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Parquet】Spark读取Parquet问题详解……

    「困惑」 spark sql 读取 parquet 文件,stage 生成任务 4 个 task,只有一个 task 处理数据,其它无 spark 任务执行 apache iceberg rewriteDataFiles...实战 spark 2.4.0 读取 parquet 文件 ❝spark.read.parquet("") ❞ org.apache.spark.sql.DataFrameReader.java...blockLocations) } (path.toString, serializableStatuses) }.collect() ... ) 真正读取数据是...2.4.0 读取 parquet,使用的是 loadV1Source spark 读取文件默认 task 任务数(分区数)最大 10000,最小是 path 的个数(注意并行度和任务数分区数区别) createNonBucketedReadRDD...读取 parquet 文件默认用 enableVectorizedReader,向量读 根据 DataSourceScanExec 代码中划分的 partitions, 但不是所有 partitions

    2.3K10

    Pandas vs Spark:数据读取

    数据读取是所有数据处理分析的第一步,而Pandas和Spark作为常用的计算框架,都对常用的数据源读取内置了相应接口。...基于此,本文首先分别介绍Pandas和Spark常用的数据读取API,而后进行简要对比分析。...02 Spark常用数据读取方法 与Pandas类似,Spark也提供了丰富的数据读取API,对于常用的数据读取方法也都给予了非常好的支持。...这里以Scala Spark为例,通过tab键补全命令查看常用的数据读取方法如下: 通过spark-shell的tab键补全得到spark.read.的系列方法 可以明显注意到Spark的数据读取API...对于csv文件也给予了很好的支持,但参数配置相较于Pandas而言则要逊色很多 spark.read.textFile:典型的txt文件读取方式,相信很多人的一个Spark项目word count大多是从读取

    1.8K30

    使用Spark读取Hive中的数据

    使用Spark读取Hive中的数据 2018-7-25 作者: 张子阳 分类: 大数据处理 在默认情况下,Hive使用MapReduce来对数据进行操作和运算,即将HQL语句翻译成MapReduce...Hive和Spark的结合使用有两种方式,一种称为Hive on Spark:即将Hive底层的运算引擎由MapReduce切换为Spark,官方文档在这里:Hive on Spark: Getting...还有一种方式,可以称之为Spark on Hive:即使用Hive作为Spark的数据源,用Spark读取HIVE的表数据(数据仍存储在HDFS上)。...因为Spark是一个更为通用的计算引擎,以后还会有更深度的使用(比如使用Spark streaming来进行实时运算),因此,我选用了Spark on Hive这种解决方案,将Hive仅作为管理结构化数据的工具...本文是Spark的配置过程。

    11.2K60

    Spark学习之数据读取与保存(4)

    Spark学习之数据读取与保存(4) 1. 文件格式 Spark对很多种文件格式的读取和保存方式都很简单。 如文本文件的非结构化的文件,如JSON的半结构化文件,如SequenceFile结构化文件。...读取/保存文本文件 Python中读取一个文本文件 input = sc.textfile("file:///home/holen/repos/spark/README.md") Scala...中读取一个文本文件 val input = sc.textFile("file:///home/holen/repos/spark/README.md") Java中读取一个文本文件...读取/保存JSON文件 Python中读取JSON文件 import json data = input.map(lambda x: json.loads(x)) Python...Spark SQL中的结构化数据 结构化数据指的是有结构信息的数据————也就是所有的数据记录都有具有一致字段结构的集合。

    1.1K70

    Spark读取和存储HDFS上的数据

    本篇来介绍一下通过Spark读取和HDFS上的数据,主要包含四方面的内容:将RDD写入HDFS、读取HDFS上的文件、将HDFS上的文件添加到Driver、判断HDFS上文件路径是否存在。...本文的代码均在本地测试通过,实用的环境时MAC上安装的Spark本地环境。...3、读取HDFS上的文件 读取HDFS上的文件,使用textFile方法: val modelNames2 = spark.sparkContext.textFile("hdfs://localhost...:9000/user/root/modelNames3/") 读取时是否加最后的part-00000都是可以的,当只想读取某个part,则必须加上。...4、将HDFS上的文件添加到Driver 有时候,我们并不想直接读取HDFS上的文件,而是想对应的文件添加到Driver上,然后使用java或者Scala的I/O方法进行读取,此时使用addFile和get

    18.6K31

    Web直传OSS

    最近公司需求,前端直接传图片到OSS,一般我们都是传到服务器后台,然后由后台存储。这样其实有一些缺点,OSSAPI上面说: 1、 上传慢。先上传到应用服务器,再上传到OSS,网络传送多了一倍。...如果数据直传到OSS,不走应用服务器,速度将大大提升,而且OSS是采用BGP带宽,能保证各地各运营商的速度。 2、 扩展性不好。如果后续用户多了,应用服务器会成为瓶颈。 3、 费用高。...由于OSS上传流量是免费的。如果数据直传到OSS,不走应用服务器,那么将能省下几台应用服务器。...在这边不得不吐槽一下OSS的API,是真的很烂,基本找不到好的方法,都是基于百度才做出来的,当然,我使用的方法估计还有一些坑,只是能实现了我的功能。...首先是引入OSS的SDK,本来使用npm安装,但是import失败,还是使用script引入。API上面直接new OSS,使用了,直接报错,要调用Wrapper方法。

    20.9K30
    领券