1. 概述 相信很多同学看过 MySQL 各种优化的文章,里面 99% 会提到:单表数据量大了,需要进行分片(水平拆分 or 垂直拆分)。分片之后,业务上必然面临的场景:跨分片的数据合并。今天我们就一
今天要跟大家分享的仍然是多表合并——MS Query合并报表! excel中隐藏着一个强大的查询工具——MS Query,但是隐藏的很深,可能很多人都不知道。它的功能却异常强大,特别是报表合并、查询等。 我们经常的会碰到的关于合并表的难题无外乎两大类: 记录合并(横向行合并); 变量合并(纵向列合并)。 记录合并(横向行合并) 这种情况下要求列字段标题与顺序相同(无合并单元格) 本例一共有四个工作薄(一班、二班、三班、四班)(每一个工作薄中只有sheet1是有效的表,每一个表都是15条记录),每一个表列字
在数据库系统中,SQL语句不区分大小写(建议用大写) SQL语句可单行或多行书写,以“;”结尾 关键词不能跨多行或简写 用空格和缩进来提高语句的可读性 子句通常位于独立行,便于编辑,提高可读性 注释: SQL标准: /*注释内容*/ 多行注释 -- 注释内容 单行注释,注意有空格 MySQL注释: #
关于 sql 语句的执行顺序网上有很多资料,但是大多都没进行验证,并且很多都有点小错误,尤其是对于 select 和 group by 执行的先后顺序,有说 select 先执行,有说 group by 先执行,到底它俩谁先执行呢?
1.用 Select 子句检索记录 Select 子句是每一个检索数据的查询核心。它告诉数据库引擎返回什么字段。 Select 子句的常见形式是: Select * 该子句的意思是“返回在所指定的记录源中能找到的所有字段”。这种命令形式很方便,因为你无需知道从表中检索的字段名称。然而,检索表中的所有列是低效的。因此,因该只检索需要的字段,这样可以大大的提高查询的效率。 2.使用 From 子句指定记录源 From 子句说明的是查询检索记录的记录源;该记录源可以是一个表或另一个存储查询。 你还能从多个表中检索记录,这在后面的章节中将介绍。 例子: Select * From students 检索students表中的所有记录 3.用 Where 子句说明条件 Where 子句告诉数据库引擎根据所提供的一个或多个条件限定其检索的记录。条件是一个表达式,可具有真假两种判断。 例子: Select * From students Where name="影子" 返回students中name字段为影子的列表,这次所返回的结果没有特定顺序,除非你使用了 Order By 子句。该子句将在后面的章节介绍。 注意:Where 子句中的文本字符串界限符是双引号,在VB中因改为单引号,因为在VB中字符串的界定符是双引号。 补充: 使用 And 和 Or 逻辑可以将两个或更多的条件链接到一起以创建更高级的 Where 子句。 例子: Select * From students Where name="影子" And number>100 返回name为影子number大于100的列表。 例子: Select * From students Where name="影子" And (number>100 Or number<50) 返回name为影子,number大于100或者小于50的列表。 Where 子句中用到的操作符 操作符 功能 < 小于 <= 小于或等于 > 大于 >= 大于或等于 = 等于 <> 不等于 Between 在某个取值范围内 Like 匹配某个模式 In 包含在某个值列表中 SQL中的等于和不等于等操作符与VB中的意义和使用相同 例子: (1).Between 操作符 Use cust Select * From students Where number Between 1 and 100 Between 操作符返回的是位于所说明的界限之内的所有记录值。这个例子就返回 number 字段 1 到 100 之间的全部记录。 (2). Like 操作符和通配符 Use cust Select * From students Where name Like "%影%" Like 操作符把记录匹配到你说明的某个模式。这个例子是返回含“影”的任意字符串。 四种通配符的含义 通配符 描述 % 代表零个或者多个任意字符 _(下划线) 代表一个任意字符 [] 指定范围内的任意单个字符 [^] 不在指定范围内的任意单个字符 全部示例子如下: Like "BR%" 返回以"BR"开始的任意字符串 Like "br%" 返回以"Br"开始的任意字符串 Like "%een" 返回以"een"结束的任意字符串 Like "%en%" 返回包含"en"的任意字符串 Like "_en" 返回以"en"结束的三个字符串 Like "[CK]%" 返回以"C"或者"K"开始的任意字符串 Like "[S-V]ing" 返回长为四个字符的字符串,结尾是"ing",开始是从S到V。 Like "M[^c]%" 返回以"M"开始且第二个字符不是"c"的任意字符串。 4. 使用 Order By 对结果排序 Order By 子句告诉数据库引擎对其检索的记录进行排序。可以对任何字段排序,或者对多个字段排序,并且可以以升序或隆序进行排序。 在一个正式的 Select 查询之后包含一个 Order By 子句,后跟想排序的字段(可以有多个)便可以说明一个排序顺序。 例子:
13年底负责数据库中间件设计时的调研笔记,拿出来和大家分享,轻拍。文章很长,可提前收藏,转发。 一,cobar是什么 开源的mysql的中间件服务 使用mysql协议 对上游,cobar就是传统mys
问题导读 1.DataFrame合并schema由哪个配置项控制? 2.修改配置项的方式有哪两种? 3.spark读取hive parquet格式的表,是否转换为自己的格式? 首先说下什么是sch
master 主分支,即生产版本,xx_test 分支对应测试环境分支,请基于 xx_test 分支拉功能分支开发。比如两个新需求同时开发,项目管理人员此时需基于 xx_test 拉出两个功能分支,分别是 feature-a 分支和 feature-b 分支。开发人员检出对应的功能分支,并在其上开发。
在实际处理数据业务需求中,我们经常会遇到这样的需求:将多个表连接起来再进行数据的处理和分析,类似SQL中的连接查询功能。
相信很多人在刚开始使用数据库的INNER JOIN、LEFT JOIN和RIGHT JOIN时,都不太能明确区分和正确使用这三种JOIN操作,本文通过一个简单的例子通俗易懂的讲解这三者的区别,希望对大家能带来帮助。
合并查询在Power Query中是很成熟的应用,相当于SQL中的各种JOIN(抽时间会写几篇SQL的join,算是SQL的小核心)。但同时,在Power Query中合并查询是一个常见的影响刷新效率的因素。在我的工作中,经常会遇到对一些非文件夹性质的数据源进行合并查询操作,所以我一直在想,有没有办法可以对其进行优化。最近我正好做了一些测试,希望这些结果能够帮助到大家。
一个好的web应用,最重要的一点是有着优秀的访问性能。数据库MySQL是web应用的组成部分,也是决定其性能的重要部分。所以提升MySQL的性能至关重要。
SQL 语句优化是一个既熟悉又陌生的话题。面对千奇百怪的 SQL 语句,虽然数据库本身对 SQL 语句的优化一直在持续改进、提升,但是我们不能完全依赖数据库,应该在给到数据库之前就替它做好各种准备工作,这样才能让数据库来有精力做它自己擅长的事情。
对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。
1、Spark SQL自定义函数就是可以通过scala写一个类,然后在SparkSession上注册一个函数并对应这个类,然后在SQL语句中就可以使用该函数了,首先定义UDF函数,那么创建一个SqlUdf类,并且继承UDF1或UDF2等等,UDF后边的数字表示了当调用函数时会传入进来有几个参数,最后一个R则表示返回的数据类型,如下图所示:
介绍使用索引、临时表 + 文件排序实现 group by,以及单独介绍临时表的三篇文章中,多次以 count(distinct) 作为示例说明。
学习和使用Hudi近一年了,由于之前忙于工作和学习,没时间总结,现在从头开始总结一下,先从入门开始
hive是一个著名的离线处理的数据仓库,可以通过类SQL语言轻松的访问大量的数据集,也可以访问HDFS中的文件,但是其底层的实现是MapReduce,所以具有较高的可扩展性。但是hive不是RDBMS数据库。
相信这内连接,左连接什么的大家都比较熟悉了,当然还有左外连接什么的,基本用不上我就不贴出来了。这图只是让大家回忆一下,各种连接查询。 然后要告诉大家的是,需要根据查询的情况,想好使用哪种连接方式效率更高。
注意:本文内容太多,公众号有字数限制,全文可点击文末的阅读原文,谢谢大家的理解。Oracle培训和认证记得找小麦苗哟。
日常的应用开发中可能需要优化SQL,提高数据访问和应用响应的效率,不同的SQL,优化的具体方案可能会有所不同,但是路径上,还是存在一些共性的。碰巧看到杨老师的这篇文章《第45期:一条 SQL 语句优化的基本思路》,为我们优化一些MySQL数据库的SQL语句提供了可借鉴的路径,值得参考和应用。
也就是说 , 后台SQL中拼接参数时 , 使用的是单引号 , 固 注入点为 单引号字符串型
方式一:select * from 学生表 where 姓名 in(select 姓名 from 学生表 group by 姓名 having count(姓名)>=2)
UNION去重且排序 UNION ALL不去重不排序 UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个
UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个结果集合并为一个,但这两者从使用和效率上来说都有所不同。 1、对重复结果的处理:UNION在进行表链接后会筛选掉重复的记录,Union All不会去除重复记录。 2、对排序的处理:Union将会按照字段的顺序进行排序;UNION ALL只是简单的将两个结果合并后就返回。 从效率上说,UNION ALL 要比UNION快很多,所以,如果可以确认合并的两个结果集中不包含重复数据且不需要排序时的话,那么就使用UNION ALL。
翻译过来的意思是:使用的select语句有不同的列数。 因为使用union的两个SQL语句产生的记录的表结构不一致。必须是结构完全一致的记录集合才可以使用UNION。我这边就是两个表的union字段数量不一样,导致上述报错。我的解决办法是在使用 UNION ALL 进行表合并操作时,使用 null as “xxx字段” 或者 ‘’ as “xxx字段”,保证字段顺序和数量一致性。
hive sql系列主打sql,通过案例,从实现到分析,帮助大家找到写sql的快乐
原标题:oracle的wm_concat()和mysql的group_concat()合并同列变成一行的用法以及和concat()合并不同列的区别
之前听 CSDN 头牌博主 @沉默王二 说过一句话,我觉得十分在理:处在互联网时代,是一种幸福,因为各式各样的信息非常容易触达,如果掌握了信息筛选的能力,就真的是“运筹帷幄之中,决胜千里之外”。就像现在各行业都内卷不断,我们要从中破圈,只有想办法提升自己的竞争力!例如备战面试,广泛无脑地刷题只会消耗完你最后一丝精力,而多刷别人总结复盘记录下来的面经,有利于我们为下一次的“跨越”做好准备!
UNION去重且排序 UNION ALL不去重不排序 UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个结果集合并为一个,
UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2]
union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下:
当我们要合并两个表或者多个表的结果时,可使用 UNION ALL 或者 UNION 操作符, UNION 和 UNION ALL 的区别在于前者会对结果集去重,而后者不会。
联合索引最左匹配原则概念 1.最左前缀匹配原则,非常重要的原则,我们在建立索引的时候,如果是联合索引.举个例子 比如 你一个表 第一个字段是id 第二个字段是 name 第三个字段是age,(id,name,age),三个字段都有索引,就是先按id排序,然后在第一个前提下 再对name排序,再对 age排序,都是在前一个索引排好序的前提下、如果你是一上来就是直接第三个索引范围查询就gg,如果你先第一个索引查 and 第二个索引范围查询,那就是可以的,必须要按顺序来,不能跳.
在面试中,SQL调优是一个常见的问题,通过这个问题可以考察应聘者对于提升SQL性能的理解和掌握程度。通常来说,SQL调优需要按照以下步骤展开。
中讲解了在Power BI中对两个表进行合并查询,数据集大小影响了效率。尤其是在进行合并查询之前删除了不需要的列,可以较大地提升合并查询的效率。但是我们不禁要问:
Parquet是一种列式存储格式,很多种处理引擎都支持这种存储格式,也是sparksql的默认存储格式。Spark SQL支持灵活的读和写Parquet文件,并且对parquet文件的schema可以自动解析。当Spark SQL需要写成Parquet文件时,处于兼容的原因所有的列都被自动转化为了nullable。
网上经常能看到一些文章总结在 mysql 中不能命中索引的各种情况,其中有一种说法就是指使用了 or 的语句都不能命中索引。
1. 背景 1.1 整体架构 腾讯广告系统中的日志数据流,按照时效性可划分为实时和离线,实时日志通过消息队列供下游消费使用,离线日志需要保存下来,供下游准实时(分钟级)计算任务,离线(小时级/天级/Adhoc)分析处理和问题排查等基于日志的业务场景。因此,我们开发了一系列的日志落地处理模块,包括消息队列订阅 Subscriber,日志合并,自研 dragon 格式日志等,如下图所示: Subscriber:Spark Streaming 任务,消费实时数据,落地到 HDFS,每分钟一个目录,供下游准实时
【引子】曾经的少年问我SQL是什么,我一时似乎有千言万语,但又不知从哪说起。作为一名码农工匠,基础的东西也可能需要温故知新,系统梳理,常用常新。
“ 在上一篇关系型数据库之MySQL的文章中,我们介绍了什么是关系型数据库以及MySQL查询优化的大体思路,那今天我们就针对具体的语句来看一下,如何优化MySQL的查询语句。”
Join的实现算法有三种,分别是Nested Loops Join, Merge Join, Hash Join。 DB2、SQL Server和Oracle都是使用这三种方式,不过Oracle选择使用nested loop的条件跟SQL Server有点差别,内存管理机制跟SQL Server不一样,因此查看执行计划,Oracle中nested loops运用非常多,而merge和hash方式相对较少,SQL Server中,merge跟hash方式则是非常普遍。 一.Nested Loopsb Join
Hive是什么?Hive 是数据仓库工具,再具体点就是一个 SQL 解析引擎,因为它即不负责存储数据,也不负责计算数据,只负责解析 SQL,记录元数据。
不管是业务数据分析 ,还是数据建模。数据处理都是及其重要的一个步骤,它对于最终的结果来说,至关重要。
本文为从大数据到人工智能博主「bajiebajie2333」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
转载自 https://www.cnblogs.com/jingfengling/p/5962182.html
二、MYSQL数据库设计原则 1、核心原则 不在数据库做运算; cpu计算务必移至业务层; 控制列数量(字段少而精,字段数建议在20以内); 平衡范式与冗余(效率优先;往往牺牲范式) 拒绝3B(拒绝大sql语句:big sql、拒绝大事务:big transaction、拒绝大批量:big batch); 2、字段类原则 用好数值类型(用合适的字段类型节约空间); 字符转化为数字(能转化的最好转化,同样节约空间、提高查询性能); 避免使用NULL字段(NULL字段很难查询优化、NULL字段的索引需要额外空
领取专属 10元无门槛券
手把手带您无忧上云