首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

日处理20亿数据,实时用户行为服务系统架构实践

携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统)、动态广告、用户画像、浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足用户的需求,因此在上游提供打通各业务线之间的用户行为数据有很大的必要性。 携程原有的实时用户行为系统存在一些问题,包括:1)数据覆盖不全;2)数据输出没有统一格式,对众多使用方提高了接入成本;3)日志处理模块是web service,比较难支持多种数据处理策略和实现方便扩容应对流量洪峰的需求等。 而近几年旅游市场高速增长,数据量越来越大,并且会持续快速增长。有越来越多的使用需求,对系统的实时性,稳定性也提出了更高的要求。总的来说,当前需求对系统的实时性/可用性/性能/扩展性方面都有很高的要求。 一、架构 这样的背景下,我们按照如下结构重新设计了系统:

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    干货 | 携程实时用户行为系统实践

    作者简介 陈清渠,毕业于武汉大学,多年软件及互联网行业开发经验。14年加入携程,先后负责了订单查询服务重构,实时用户行为服务搭建等项目的架构和研发工作,目前负责携程技术中心基础业务研发部订单中心团队。 携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统),动态广告,用户画像,浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足

    06

    日处理20亿数据,实时用户行为服务系统架构实践

    携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统)、动态广告、用户画像、浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足用户的需求,因此在上游提供打通各业务线之间的用户行为数据有很大的必要性。 携程原有的实时用户行为系统存在一些问题,包括:1)数据覆盖不全;2)数据输出没有统一格式,对众多使用方提高了接入成本;3)日志处

    010

    Kafka OffsetMonitor:监控消费者和延迟的队列

    一个小应用程序来监视kafka消费者的进度和它们的延迟的队列。 KafkaOffsetMonitor是用来实时监控Kafka集群中的consumer以及在队列中的位置(偏移量)。 你可以查看当前的消费者组,每个topic队列的所有partition的消费情况。可以很快地知道每个partition中的消息是否 很快被消费以及相应的队列消息增长速度等信息。这些可以debug kafka的producer和consumer,你完全知道你的系统将 会发生什么。 这个web管理平台保留的partition offset和consumer滞后的历史数据(具体数据保存多少天我们可以在启动的时候配 置),所以你可以很轻易了解这几天consumer消费情况。 KafkaOffsetMonitor这款软件是用Scala代码编写的,消息等历史数据是保存在名为offsetapp.db数据库文件中,该数据 库是SQLLite文件,非常的轻量级。虽然我们可以在启动KafkaOffsetMonitor程序的时候指定数据更新的频率和数据保存 的时间,但是不建议更新很频繁,或者保存大量的数据,因为在KafkaOffsetMonitor图形展示的时候会出现图像展示过 慢,或者是直接导致内存溢出了。 所有的关于消息的偏移量、kafka集群的数量等信息都是从Zookeeper中获取到的,日志大小是通过计算得到的。 消费者组列表

    017

    干货 | 携程机票实时数据处理实践及应用

    作者简介 张振华,携程旅行网机票研发部资深软件工程师,目前主要负责携程机票大数据基础平台的建设、运维、迭代,以及基于此的实时和非实时应用解决方案研发。 携程机票实时数据种类繁多,体量可观,主要包括携程机票用户访问、搜索、下单等行为日志数据;各种服务调用与被调用产生的请求响应数据;机票服务从外部系统(如GDS)获取的机票产品及实时状态数据等等。这些实时数据可以精确反映用户与系统交互时每个服务模块的状态,完整刻画用户浏览操作轨迹,对生产问题排查、异常侦测、用户行为分析等方面至关重要。 回到数据本身,当我们处理数

    05
    领券