说明all in one是一个单机版本dbus环境,是给用户快速体验dbus的功能,只是一个简单体验版,不能用于其它环境或者用途,具体包括如下:
携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统)、动态广告、用户画像、浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足用户的需求,因此在上游提供打通各业务线之间的用户行为数据有很大的必要性。 携程原有的实时用户行为系统存在一些问题,包括:1)数据覆盖不全;2)数据输出没有统一格式,对众多使用方提高了接入成本;3)日志处理模块是web service,比较难支持多种数据处理策略和实现方便扩容应对流量洪峰的需求等。 而近几年旅游市场高速增长,数据量越来越大,并且会持续快速增长。有越来越多的使用需求,对系统的实时性,稳定性也提出了更高的要求。总的来说,当前需求对系统的实时性/可用性/性能/扩展性方面都有很高的要求。 一、架构 这样的背景下,我们按照如下结构重新设计了系统:
以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足用户的需求,因此在上游提供打通各业务线之间的用户行为数据有很大的必要性。
作者简介 陈清渠,毕业于武汉大学,多年软件及互联网行业开发经验。14年加入携程,先后负责了订单查询服务重构,实时用户行为服务搭建等项目的架构和研发工作,目前负责携程技术中心基础业务研发部订单中心团队。 携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统),动态广告,用户画像,浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足
携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统)、动态广告、用户画像、浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足用户的需求,因此在上游提供打通各业务线之间的用户行为数据有很大的必要性。 携程原有的实时用户行为系统存在一些问题,包括:1)数据覆盖不全;2)数据输出没有统一格式,对众多使用方提高了接入成本;3)日志处
携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统)、动态广告、用户画像、浏览历史等等。
背景 Storm是TRC(腾讯实时计算)平台的核心组件。与Hadoop不同,storm之上没有像hive,pig之类的解放应用开发人员效率的工具。开发原生的storm应用必须掌握storm的api,开发门槛高,调试困难,效率低下。 EasyCount(SQL on strom)是构建在storm之上的一套实时计算系统。应用开发人员只需通过配置定制化的脚本来完成业务逻辑的描述,能够快速实现各种实时统计需求,降低使用门槛,提升开发效率。 系统设计与实现 上图是EC系统的架构图。用于描述用户业务逻辑的SQL
静态数据:为了支持决策分析而构建的数据仓库系统,其中存放的大量历史数据就是静态数据。
作者:高级架构师 文章来自:https://my.oschina.net/u/3772106/blog/1616343 nginx 对于中间件nginx常用来做流量的分发,同时nginx本身也有自己的
对于高并发架构,毫无疑问缓存是最重要的一环,对于大量的高并发,可以采用三层缓存架构来实现,nginx+redis+ehcache nginx 对于中间件nginx常用来做流量的分发,同时nginx本身
我的环境已经安装了Ambari-2.7.4.0+HDP-3.1.4.0大数据平台,已安装的组件的版本如下:
“快”这个词是不明确的,专业属于点有两个层面: 1.时延 , 指数据从产生到运算产生结果的时间,题主的“快”应该主要指这个。 2. 吞吐, 指系统单位时间处理的数据量。 首先明确一点,在消耗资源相同的情况下,一般来说storm的延时低于mapreduce。但是吞吐也低于mapreduce。 Storm的网络直传、内存计算,其时延必然比hadoop的通过hdfs传输低得多;当计算模型比较适合流式时,storm的流式处理,省去了批处理的收集数据的时间;因为storm是服务型的作业,也省去了作业调度的时延。所以从
线上部分实时job是用storm开发的,为了监控数据的延迟,在storm处理日志的时候会把日志的时间插入到Redis中,然后通过zabbix做延迟的监控。由于经常有新的job上线,手动配置监控项就变得比较麻烦,为了解放生产力,还是需要搞成自动化。
接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系统崩溃的问题以及解决方案;
Hadoop已被公认为大数据分析领域无可争辩的王者,它专注与批处理。这种模型对许多情形(比如:为网页建立索引)已经足够,但还存在其他一些使用模型,它们需要来自高度动态的来源的实时信息。为了解决这个问题,就得借助Twitter推出得Storm。Storm不处理静态数据,但它处理预计会连续的流数据。考虑到Twitter用户每天生成1.4亿条推文,那么就很容易看到此技术的巨大用途。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/details/77918156
1. 摘要: TDW很好的解决了海量数据离线处理问题,但是在如下场景下:实时报表,实时监控,实时推荐,实时分析,TDW无法满足需求。而storm是应对这些场景的利器,但是storm开发的门槛较高,对于大多数使用TDW的同学来说,若是能有一套支持storm的SQL,想必那是极好的。故此本宫,不,本团队开发了EasyCount以飧大众。 EasyCount使用SQL描述业务的实时计算的需求,并将SQL转化为基于storm的topology。相对于传统SQL,实时SQL面临诸多挑战,EasyCount通过不同的方
JStorm 是一个类似Hadoop MapReduce的系统, 用户按照指定的接口实现一个任务,然后将这个任务递交给JStorm系统,JStorm将这个任务跑起来,并且按7 * 24小时运行起来,一旦中间一个Worker 发生意外故障, 调度器立即分配一个新的Worker替换这个失效的Worker。
neo4j有社区版本和企业版。社区版本是免费的,只支持单机版;企业版是付费的,是分布式的。整理了一些不错的参考资料分享给大家。
1949-06-11T00:00:00 - 2018-11-09T00:00:00
1851-06-25T00:00:00 - 2018-11-04T00:00:00
在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗。大量的预分区数量会导致hbase客户端缓存大量的分区地址,导致内存的增长,某些系统中一个JVM进程中会开启几十个独立的hbase客户端对象,同时会查询多张Hbase表,这样JVM进程就会缓存 (预分区数 X 表数 X Hbase客户端数=条记录)。
原文:http://www.infoq.com/cn/news/2016/07/lianjia-architect-plantform
数据时代,从数据中获取业务需要的信息才能创造价值,这类工作就需要计算框架来完成。传统的数据处理流程中,总是先收集数据,然后将数据放到DB中。当人们需要的时候通过DB对数据做query,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决。 基于此,一种新的数据计算结构---流计算方式出现了,它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送
导读:本文主要介绍一种通用的实时数仓构建的方法与实践。实时数仓以端到端低延迟、SQL标准化、快速响应变化、数据统一为目标。在实践中,我们总结的最佳实践是:一个通用的实时生产平台 + 一个通用交互式实时分析引擎相互配合同时满足实时和准实时业务场景。两者合理分工,互相补充,形成易于开发、易于维护、效率最高的流水线,兼顾开发效率与生产成本,以较好的投入产出比满足业务多样需求。
实时数仓以端到端低延迟、SQL标准化、快速响应变化、数据统一为目标。美团外卖数据智能组总结的最佳实践是:一个通用的实时生产平台跟一个通用交互式实时分析引擎相互配合,同时满足实时和准实时业务场景。两者合理分工,互相补充,形成易开发、易维护且效率高的流水线,兼顾开发效率与生产成本,以较好的投入产出比满足业务的多样性需求。
之前查阅源码啊,性能测试啊调优啊。。基本告一段落,项目也接近尾声,那么整理下spark所有配置参数与优化策略,方便以后开发与配置:
Join 绝对是关系型数据库中最常用一个特性,然而在分布式环境中,跨分片的 join 确是最复杂的,最难解决一个问题。
编者:本文作者为携程大数据平台负责人张翼。张翼浙江大学硕士毕业,2015年初加入携程,主导了携程实时数据计算平台的建设,以及携程大数据平台整合和平台技术的演进。进入互联网行业近10年,从事大数据平台和架构的工作超过6年。 今天给大家分享的是携程在实时数据平台的一些实践,按照时间顺序来分享我们是怎么一步一步构建起这个实时数据平台的,目前有一些什么新的尝试,未来的方向是怎么样的,希望对需要构建实时数据平台的公司和同学有所借鉴。 为什么要做数据平台 首先先介绍一下背景,为什么我们要做这个数据平台?其实了解携程的
背景 本人在维护一套由storm、kafka、zookeeper组成的分布式实时计算系统。当数据量很小的时候,系统处理起来其实是绰绰有余的,基本上按照系统默认配置来就可以了。然而当数据量增长到一定规模的时候,系统的各个配置都对整个系统的性能有着至关重要的影响。在不断的处理现网问题、研究的过程中,对系统的一些关键配置有一些心得。在这里分享出来,同大家一起学习交流。 今天我们在这里只介绍storm一些相关的比较重要的配置项和优化项。 参数配置 并行度 本人曾在上一篇文章中翻译过官方关于并行度的解释,但是实际在生
一个小应用程序来监视kafka消费者的进度和它们的延迟的队列。 KafkaOffsetMonitor是用来实时监控Kafka集群中的consumer以及在队列中的位置(偏移量)。 你可以查看当前的消费者组,每个topic队列的所有partition的消费情况。可以很快地知道每个partition中的消息是否 很快被消费以及相应的队列消息增长速度等信息。这些可以debug kafka的producer和consumer,你完全知道你的系统将 会发生什么。 这个web管理平台保留的partition offset和consumer滞后的历史数据(具体数据保存多少天我们可以在启动的时候配 置),所以你可以很轻易了解这几天consumer消费情况。 KafkaOffsetMonitor这款软件是用Scala代码编写的,消息等历史数据是保存在名为offsetapp.db数据库文件中,该数据 库是SQLLite文件,非常的轻量级。虽然我们可以在启动KafkaOffsetMonitor程序的时候指定数据更新的频率和数据保存 的时间,但是不建议更新很频繁,或者保存大量的数据,因为在KafkaOffsetMonitor图形展示的时候会出现图像展示过 慢,或者是直接导致内存溢出了。 所有的关于消息的偏移量、kafka集群的数量等信息都是从Zookeeper中获取到的,日志大小是通过计算得到的。 消费者组列表
工欲善必先利其器,firefox一直是各位渗透师必备的利器,小编这里推荐34款firefox渗透测试辅助插件,其中包含渗透测试、信息收集、代理、加密解密等功能。 1:Firebug Firefox的 五星级强力推荐插件之一,不许要多解释 2:User Agent Switcher 改变客户端的User Agent的一款插件 3:Hackbar 攻城师必备工具,提供了SQL注入和XSS攻击,能够快速对字符串进行各种编码。 4:HttpFox 监测和分析浏览器与web服务器之间的HTTP流量 5:Live H
storm-2.0.0/storm-client/src/jvm/org/apache/storm/metric/IEventLogger.java
近些年,企业对数据服务实时化服务需求日益增多。本文整理了常见实时数据组件的性能特点和适用场景,介绍了美团如何通过 Flink 引擎构建实时数据仓库,从而提供高效、稳健的实时数据服务。此前我们美团技术博客发布过一篇文章《流计算框架 Flink 与 Storm 的性能对比》,对 Flink 和 Storm 两个引擎的计算性能进行了比较。本文主要阐述使用 Flink 在实际数据生产上的经验。
注意:360安全浏览器有些比较不错的功能值得体验下(firefox/chrome有些功能我没能正常使用)不喜勿喷。firefox一直是各位渗透测试必备的利器,这里整理了34款Firefox插件和几款Chrome的插件,其中包含渗透测试、信息收集、代理、加密解密等功能。 Firefox插件 1:Firebug Firefox的 五星级强力推荐插件之一,不许要多解释 https://addons.mozilla.org/en-US/firefox/addon/firebug/ 2:User Agent Swi
互联网和移动互联网技术开启了大规模生产、分享和应用数据的大数据时代。面对如此庞大规模的数据,如何存储?如何计算?各大互联网巨头都进行了探索。Google的三篇论文 GFS(2003),MapReduce(2004),Bigtable(2006)为大数据技术奠定了理论基础。随后,基于这三篇论文的开源实现Hadoop被各个互联网公司广泛使用。在此过程中,无数互联网工程师基于自己的实践,不断完善和丰富Hadoop技术生态。经过十几年的发展,如今的大数据技术生态已相对成熟,围绕大数据应用搭建的平台架构和技术选型也逐渐趋向统一。
作者简介 张振华,携程旅行网机票研发部资深软件工程师,目前主要负责携程机票大数据基础平台的建设、运维、迭代,以及基于此的实时和非实时应用解决方案研发。 携程机票实时数据种类繁多,体量可观,主要包括携程机票用户访问、搜索、下单等行为日志数据;各种服务调用与被调用产生的请求响应数据;机票服务从外部系统(如GDS)获取的机票产品及实时状态数据等等。这些实时数据可以精确反映用户与系统交互时每个服务模块的状态,完整刻画用户浏览操作轨迹,对生产问题排查、异常侦测、用户行为分析等方面至关重要。 回到数据本身,当我们处理数
SQL 是一门 ANSI 的标准计算机语言,用来访问和操作数据库系统。SQL 语句用于取回和更新数据库中的数据。
随机分组,随机派发stream里面的tuple,保证每个bolt task接收到的tuple数目大致相同。 轮询,平均分配
各大优秀黑客技术论坛: Hack Forums: Hack Forums是目前最为理想的黑客技术学习根据地。该论坛不仅在设计上面向黑客群体,同时也适用于开发人员、博主、游戏开发者、程序员、图形设计师以及网络营销人士。 Evil Zone: Evil Zone是一个专门面向黑客群体的论坛。当然,其中也涉及科学、编程以及艺术等领域的内容。 Offensive Community: Offensive安全社区基本上属于一个“具备大量黑客教程收集库的黑客论坛”。 Hellbound Hackers: 这里提供与黑客
7月13日,Hortonworks在其官网宣布发布HDP3.0,包括Ambari2.7和SmartSense1.5。包括下载仓库与配套文档都正式GA。
内容来源:2018 年 5 月 5 日,小米HBase研发工程师吴国泉在“ACMUG & CRUG 2018 成都站”进行《大数据时代系统体系架构和对比:存储与计算》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
ranger大数据领域的一个集中式安全管理框架,它可以对诸如hdfs、hive、kafka、storm等组件进行细粒度的权限控制。本文将介绍部署过程
离线计算:批量获取数据、批量传输数据、周期性批量计算数据、数据展示。 代表技术:Sqoop 批量导入数据、HDFS 批量存储数据、MapReduce 批量计算数据、Hive 批量计算数据。
大家好,又见面了,我是你们的朋友全栈君。 大数据学习路线 java(Java se,javaweb) Linux(shell,高并发架构,lucene,solr) Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume) 机器学习(R,mahout) Storm(Storm,kafka,redis) Spark(scala,spark,spark core,spark sql,spark streaming,spark
腾讯云数据仓库PostgreSql TDSQL,PingCAP的TiDB,阿里的OceanBase,华为云DWS,都是HTAP的业内常用数仓,可以一站式解决需求。
操作系统:Centos,※,Ubuntu,Redhat※,,suse,Freebsd
领取专属 10元无门槛券
手把手带您无忧上云