首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

svd(x,nu = 0,nv = k)中出错:'x‘中的值无限或缺少值。矩阵中没有NA或INF值

在使用svd函数时出现了错误:'x'中的值无限或缺少值。矩阵中没有NA或INF值。

这个错误通常表示在计算奇异值分解(Singular Value Decomposition,SVD)时,输入的矩阵中存在无限值(Infinity)或缺失值(Missing Values)。

解决这个问题的方法有以下几个步骤:

  1. 检查输入矩阵x:首先,需要确保输入的矩阵x中不包含无限值或缺失值。可以使用is.infinite()和is.na()函数来检查矩阵中是否存在无限值或缺失值。如果存在这些值,需要对其进行处理,例如使用合适的方法填充缺失值或将无限值替换为合适的数值。
  2. 数据预处理:在进行SVD之前,通常需要对数据进行预处理,以确保数据的质量和可用性。这包括数据清洗、缺失值处理、异常值处理等。确保输入矩阵x中的数据符合SVD的要求。
  3. 调整参数nu和nv:在svd函数中,参数nu和nv分别表示输出矩阵U和V的列数。如果参数k的值大于输入矩阵x的列数,会导致错误。确保参数k的值不超过输入矩阵x的列数。

综上所述,要解决这个错误,需要检查并处理输入矩阵x中的无限值和缺失值,并确保参数nu、nv的取值合理。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

黑箱方法 支持向量机②

:指定参与分析的变量公式 # subset:为索引向量,指定分析的样本数据 # na.action:针对缺失值的处理方法,默认会删除缺失值所在的行 # scale:逻辑参数,是否标准化变量,默认标准化处理...,subset, + na.action = na.omit) # x:可以是矩阵,可以是向量,也可以是稀疏矩阵 # y:分类变量 # type:指定建模的类别,支持向量机通常用于分类、回归和异常值检测...:用于多项式核函数和神经网络核函数的参数,默认为0 # nu:用于nu-classification、nu-regression和one-classification回归类型中的参数 # class.weights...:逻辑参数,是否将分类结果包含在模型中,默认生成拟合值 degree:多项式核的次数,默认为3 gamma:除去线性核外,其他核的参数,默认为1/数据维数 coef0:多项式核与sigmoid核的参数,...默认为0. cost:C分类中惩罚项c的取值 nu:Nu分类,单一分类中nu的值 cross:做k折交叉验证,计算分类正确性。

38220

范数详解-torch.linalg.norm计算实例

范数是一种数学概念,可以将向量或矩阵映射到非负实数上,通常被用来衡量向量或矩阵的大小或距离。在机器学习和数值分析领域中,范数是一种重要的工具,常用于正则化、优化、降维等任务中。...标准二范数的一些重要性质包括: 非负性: 对于任意向量 x ,它的标准二范数都是非负的,即 ||x||_2 \geq 0 。...,原本很大的矩阵,现在只需3个小矩阵就能存储,可以使用torch.svd()进行奇异值分解。...L1 范数可以被用于衡量向量或矩阵中各个元素的绝对大小,具有一些特殊的性质,例如对于稀疏向量,它的 L1 范数更容易被最小化,因为它倾向于将向量的一些元素设为 0。...在实际应用中,计算矩阵的 L2 范数可以使用 SVD 分解,例如: PyTorch 中其对应的参数为ord='2',例如: A = torch.tensor([[1, 2, 3],

1.9K30
  • Python AI 教学|SVD(Singular Value Decomposition)算法及应用

    (1)相似度 假设有一个用户和电影的数据集,我们可以将用户和电影的对应关系看成一个矩阵,如下图所示,行代表用户,列表示电影,矩阵的元素中0表示用户没有看过,1-5表示用户对这部电影的喜爱程度,值越大代表用户越喜欢这部电影...算法实现: 函数说明(二) 【1】 norm函数 用来计算向量或矩阵范数的函数,同svd一样属于numpy库中的linalg。...语法:numpy.linalg.norm(x,p) 【注释:①x表示向量或者矩阵;②p表示范数的种类:p=1计算1-范数;p=2计算2-范数,同norm(x);p=inf计算无穷范数;p='fro'...3)基于电影内容的推荐引擎 目的是构建一个推荐引擎,寻找到用户没有观看过的电影,算法需要实现的事情包括:①寻找用户没有观看过的电影——矩阵中的0值②在上述没看过的电影中对每部电影预计一个用户可能给予的等级...(M, k) 【注释:①M方阵的规模,即行数、列数;②k默认为0,输出对角线全“1”,其余全“0”的方阵;k为正整数,右上方第k条对角线全“1”其余全“0”; k为负整数,左下方第k条对角线全“1”

    2.7K40

    「Workshop」第三十七期 支持向量机

    sign() (在数学和计算机运算中,其功能是取某个数的符号(正或负):当x>0,sign(x)=1;当x=0,sign(x)=0; 当x0, sign(x)=-1;在通信中,sign(t)表示这样一种信号...所以我们从w0开始更新到wT的过程中,内积会越来越大,两个向量也会越来越接近,慢慢的靠近;不会无限制的增长,增长的最大的长度是Xn,会停下来。...(x)) 1 else 1 / ncol(x),coef0 = 0, cost = 1, nu = 0.5, + class.weights = NULL, cachesize = 40, tolerance...,subset, + na.action = na.omit) # x:可以是矩阵,可以是向量,也可以是稀疏矩阵 # y:分类变量 # type:指定建模的类别,支持向量机通常用于分类、回归和异常值检测...:用于多项式核函数和神经网络核函数的参数,默认为0 # nu:用于nu-classification、nu-regression和one-classification回归类型中的参数 # class.weights

    39320

    R语言中的特殊值及缺失值NA的处理方法

    另外,我们可以采用is.finite()或is.infinite()函数来判断元素是有限的还是无限的,而对NaN进行判断返回的结果都是False。...Inf/-Inf Inf即Infinity无穷大,通常代表一个很大的数或以0为除数的运算结果,Inf说明数据并没有缺失(NA)。...drop_na(df,X1) # 去除X1列的NA 2 填充法 用其他数值填充数据框中的缺失值NA。...replace_na(df$X1,5) # 把df的X1列中的NA填充为5 2.3 fill() 使用tidyr包的fill()函数将上/下一行的数值填充至选定列中NA。...fill(df,X1,.direction = "up") # 将NA下一行的值填充到df的X1列中的NA 除此之外,类似原理的填充法还有均值填充法(用该变量的其余数值的均值来填充)、LOCF(last

    3.3K20

    SVM的R语言实战

    参数na.action用于指定当样本数据中存在无效的空数据时系统应该进行的处理。默认值na.omit表明程序会忽略那些数据缺失的样本。...= 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x), 3. coef0 = 0, cost = 1, nu = 0.5, subset, na.action...= na.omit) 此处,x可以是一个数据矩阵,也可以是一个数据向量,同时也可以是一个稀疏矩阵。...coef0参数是指核函数中多项式内积函数与sigmoid内积函数中的参数,默认值为0。 另外,参数cost就是软间隔模型中的离群点权重。...从上面的输出中可以看到,对于样本数据4而言,标签setosa/versicolor对应的值大于0,因此属于setosa类别;标签setosa/virginica对应的值同样大于0,以此判定也属于setosa

    2K40

    SVD分解及其应用

    其本质就是找到将任何一个矩阵对角化分解的两组标准正交的基底,同时对应的奇异值反映了对应基底变换的性质,为0表示对应的维度缺少信息,越大表明对应的维度容纳的信息方差越大。...特征值和奇异值分别表示对角化解耦后对应的基底的长度,从线性变换的角度上是对不同的基的延伸程度,从方差的角度上来说是方差的大小信息的多少。 特征值或奇异值如果等于0,说明矩阵存在某一个维度上的信息缺失。...对角化的优点是(以特征值分解举例): 可以进行对角化分解,A=SΛS−1A= S \Lambda S^{-1} 矩阵的kk次方Ak=SΛkS−1A^k =S \Lambda^k S^{-1} 从对角化的矩阵中可以知道矩阵是不是缺失了某些维度的信息...其一共有三种模式: 这个矩阵的特征值有3,对应了三种的模式,选择最大的三个奇异值进行SVD后的结果是: 代码如下: % 构建目标图像矩阵X x1 = ones(25,1); x2 = [ones(5,1...= pinv([X;Xb])'*Y'; % 分别是SVD和线性回归拟合的数据 Y1 = k*X; Y2 = w(1)*X+w(2); % 画图并比较 figure() % 注释蛮方便的函数ezplot

    2.7K60

    HDU 3468 Treasure Hunting(BFS+网络流之最大流)

    题目地址:HDU 3468 这道题的关键在于能想到用网络流。然后还要想到用bfs来标记最短路中的点。 首先标记方法是,对每个集合点跑一次bfs,记录全部点到该点的最短距离。...然后以集合点建X集,宝物点建Y集构造二分图,将从某集合点出发的最短路中经过宝物点与该集合点连边。剩下的用二分匹配算法或最大流算法都能够。(为什么我的最大流比二分匹配跑的还要快。。。。。。。)。...题目有一点须要注意,就是当从集合点i到i+1没有路的时候,要输出-1....=0x3f3f3f3f; int head[12001], source, sink, nv, cnt; int cur[12001], num[12001], pre[12001], d[12001]...,INF,sizeof(dd)); cnt=0; nu=0; tot=0; for(i=0; i<n; i++) {

    26110

    SVM的R语言实战

    参数na.action用于指定当样本数据中存在无效的空数据时系统应该进行的处理。默认值na.omit表明程序会忽略那些数据缺失的样本。...= 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x), 3. coef0 = 0, cost = 1, nu = 0.5, subset, na.action...= na.omit) 此处,x可以是一个数据矩阵,也可以是一个数据向量,同时也可以是一个稀疏矩阵。...coef0参数是指核函数中多项式内积函数与sigmoid内积函数中的参数,默认值为0。 另外,参数cost就是软间隔模型中的离群点权重。...从上面的输出中可以看到,对于样本数据4而言,标签setosa/versicolor对应的值大于0,因此属于setosa类别;标签setosa/virginica对应的值同样大于0,以此判定也属于setosa

    1.1K90

    数据科学中必须知道的5个关于奇异值分解(SVD)的应用

    将奇异值视为矩阵中不同特征的重要性值 矩阵的秩是对存储在矩阵中的独特信息的度量。...# 可视化结果 plt.scatter(X[:, 0], X[:, 1], c = s_cluster) plt.show() 你将从上面的代码中得到以下不错的聚类结果: 5....SVD SVD将矩阵分解为3个矩阵的乘积,如下所示: 如果A是m x n矩阵: U是左奇异向量的m×m矩阵 S是以递减顺序排列的奇异值的m×n对角矩阵 V是右奇异向量的n×n矩阵 为什么SVD用于降维?...为此,选择前k个奇异值并相应地截断3个矩阵。 3种在Python中使用SVD的方法 我们知道什么是SVD,它是如何工作的,以及它在现实世界中的用途。但是我们如何自己实现SVD呢?...你可以使用numpy.linalg中的SVD获取完整的矩阵U,S和V。注意,S是对角矩阵,这意味着它的大多数元素都是0。这称为稀疏矩阵。为了节省空间,S作为奇异值的一维数组而不是完整的二维矩阵返回。

    6.2K43

    在R中使用支持向量机(SVM)进行数据挖掘

    参数na.action用于指定当样本数据中存在无效的空数据时系统应该进行的处理。默认值na.omit表明程序会忽略那些数据缺失的样本。...1 else 1 / ncol(x), coef0 = 0, cost = 1, nu = 0.5, subset, na.action = na.omit) 此处,x可以是一个数据矩阵,也可以是一个数据向量...coef0参数是指核函数中多项式内积函数与sigmoid内积函数中的参数,默认值为0。 另外,参数cost就是软间隔模型中的离群点权重。...从上面的输出中可以看到,对于样本数据4而言,标签setosa/versicolor对应的值大于0,因此属于setosa类别;标签setosa/virginica对应的值同样大于0,以此判定也属于setosa...;在二分类器versicolor/virginica中对应的决策值大于0,判定属于versicolor。

    1.4K100

    跟着生信技能树,学习 CIBERSORT

    从5'和3'相邻碱基(也称为侧翼碱基对或三核苷酸上下文)中获取信息会导致96种可能的突变类型(例如A [C> A] A,A [C> A] T等)。...肿瘤的突变目录是通过将96种突变类型之一中的每个单核苷酸变体(SNV)分类(同义词:碱基对取代或置换点突变)并计算这96种突变类型中每种突变的总数来创建的(见图)。...img 矩阵V分解为左矩阵W和右矩阵H,可理解为原始矩阵V的列向量是H中的所有列向量的加权和,对应的权重系数则是W的列向量的元素,所有H称为基矩阵,W称为系数矩阵。...热图 柱状图 箱型图 小结 CIBERSORT就是将已知的LM22作为参考组,与混合样本表达矩阵取交集后随机从合样本表达矩阵中抽样 对抽样结果运用SVM算法的nu regression+line kernel...,采取不同nu值获得最佳的model。

    7.2K33

    在Python中实现你自己的推荐系统

    在本教程中,你将使用奇异值分解(SVD)实现基于模型的CF和通过计算余弦相似实现基于内存的CF。 我们将使用MovieLens数据集,它是在实现和测试推荐引擎时所使用的最常见的数据集之一。...你通过将低秩矩阵相乘,在原始矩阵填补缺少项,以调整这个矩阵,从而尽可能的近似原始矩阵。 让我们计算MovieLens数据集的稀疏度: ?...混合推荐系统将在未来的教程中介绍。 SVD 一个众所周知的矩阵分解方法是奇异值分解(SVD)。通过使用奇异值分解,协同过滤可以被近似一个矩阵X所制定。...Netflix Prize比赛中的获胜队伍使用SVD矩阵分解模型来生成产品建议,更多的信息,推荐阅读文章:Netflix推荐:5星之外和Netflix Prize和SVD。...给定m x n矩阵X: U是一个(m x r)正交矩阵 S是一个对角线上为非负实数的(r x r)对角矩阵 V^T是一个(r x n)正交矩阵 S的对角线上的元素被称为X的奇异值。

    2.9K100

    机器学习笔记之矩阵分解 SVD奇异值分解

    0x00 什么是SVD 奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在生物信息学、信号处理、金融学、统计学等领域有重要应用,SVD都是提取信息的强度工具...0x01 SVD的原理 1.1 矩阵相关知识 正交与正定矩阵 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等。两个向量正交的意思是两个向量的内积为 0。...即是一个正规矩阵,但它显然不是酉矩阵或正交矩阵;因为 ? 谱定理和谱分解 矩阵的对角化是线性代数中的一个重要命题。...当然,这个矩阵中会有非常多的值是不知道的,可能是用户没有用过这个商品,也有可能用户使用后没有进行评分。如下图所示: ? 图中空白位置即未知的值。...0x04 参考链接 基于SVD协同过滤算法实现的电影推荐系统 奇异值分解(SVD)原理与在降维中的应用 We Recommend a Singular Value Decomposition 谈谈矩阵的

    1.4K10

    「Workshop」第十一期:降维

    输入的可以是原始矩阵或者相关系数矩阵,输入初始数据后相关系数矩阵会被自动计算,「计算前确保数据中没有缺失值」。 选择因子模型 选择PCA(数据降维)还是EFA(潜在结构的发现)。...(线段和x符号组成)、根据100个随机数据矩阵推导出来的特征值均值(虚线)、大于1的特征值准则(y = 1的水平线)。...The root mean square of the residuals (RMSR) is 0 with the empirical chi square 0 with prob NA...4.3 奇异值分解(SVD) 4.3.1 含义 是矩阵分解的一种形式,通过奇异值分解,将原始矩阵分解成两个正交矩阵和一个对角矩阵,帮助去除从线性代数角度观察存在线性相关的冗余数据,常被应用在特征筛选、图像处理和聚类等很多领域...4.3.2 用R实现 (1)数据集进行SVD处理,获得分解矩阵 > swiss.svd = svd(swiss) > str(swiss.svd) # 查看一下它的数据结构,可以看到三个矩阵信息,d是拥有奇异值的对角矩阵

    1.3K20

    IEEE Trans 2006 使用K-SVD构造超完备字典以进行稀疏表示(稀疏分解)

    在K-means方法中,在ck的更新过程中X的非零项是固定的,因为K-means方法(gain-shape VQ)列更新是相互独立的。 D的列更新可以用奇异值分解方法。...但是,这一步很有可能会出错,因为在更新dk的时候,我们没有对稀疏进行约束,则我们得到的XT 会是满向量,即大多素元素都为非零的向量。...注意式(23)的求解需要:i)D中的列标准化;ii)得到的稀疏表示要么保持不变要么值减少。 类似于K-means的形式,我们将该算法称为K-SVD,算法流程如下图所示。 ?...考虑K-SVD算法是否收敛。首先讨论稀疏编码阶段:找到最佳描述信号yi的不超过T0个的几个原子的线性组合。在这一阶段,假定字典矩阵是固定的,每一个编码步骤都会使式(19)中的误差‖Y-DX‖F2减少。...D 从K-SVD回到K-means 当T0=1时,回到了gain-shape VQ的情况,K-SVD变成了代码本训练的问题。当T0=1时,矩阵X每列只有一个非零项,则式(23)中 ?

    2.7K91

    R语言学习笔记

    5) # 求向量x中数值大于5的元素的位置 [1] 6 7 8 9 10 矩阵与数组 矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合。...测量根本没有发生,例如在做调查问卷时,有些问题没有回答,或者有些问题是无效的回答等。 在R中,NA代表缺失值,NA是不可用,not available的简称,用来存储缺失信息。...这里缺失值NA表示没有,但注意没有并不一定就是0,NA是不知道是多少,也能是0,也可能是任何值,缺失值和值为零是完全不同的。...(na.omit(sleep))) # 去除矩阵中含有缺失值的行 [1] 42 R中缺失值得处理方式 其他缺失数据 缺失数据NaN代表不可能的值; Inf表示无穷,分为正无穷Inf和负无穷Inf,代表无穷大或者无穷小...NA是存在的值,但是不知道是多少, > 1/0 [1] Inf > 0/0 [1] NaN > -1/0 [1] -Inf > is.nan(0/0) [1] TRUE > is.infinite(-

    2.5K100

    第11章 降维 笔记

    拓展princomp是另一个高不成分分析函数,与上面的 prcomp采用奇异值分解不同,采用相关矩阵或协方差矩阵的特征值计算方法,一般更习惯用后者。...The root mean square of the residuals (RMSR) is 0 with the empirical chi square 0 with prob NA...11.8 使用SVD进行降维 奇异值分解是矩阵分解的一种形式,可以将一个矩阵分解为两个正交矩阵和一个对角矩阵,原始矩阵可由这三个矩阵相乘得到。...是一类分解实数或复数矩阵的常见方法,PCA可以被看成SVD的一种特例: svd.m svd(scale(swiss)) svd.m$v [,1] [,2]...算法主要分成三步:计算每个点的k个邻近,然后计算每个邻近点的权值,使得每个点都能最优地由其邻近点组合重构,即残差和最小。

    95640
    领券