例如:x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])tf.abs(x) # [5.25594902, 6.60492229]参数:x: 一个类型为
下面是一个很简单的、你可能希望添加到Graph里的操作: def huber_loss(a): if tf.abs(a) <= delta: loss = a * a / 2 else:...loss = delta * (tf.abs(a) - delta / 2) return loss 通过Eager Execution,只是能做到这一点,但是由于Python解释器开销(...使用AutoGraph,这段代码: @autograph.convert() def huber_loss(a): if tf.abs(a) <= delta: loss = a * a /...2 else: loss = delta * (tf.abs(a) - delta / 2) return loss 在执行时将变成这种样子: def tf__huber_loss(a...(a) - delta / 2) return loss, loss = ag__.utils.run_cond(tf.less_equal(tf.abs(a), delta),
下面这个例子你可能想要添加到计算图中: 1def huber_loss(a): 2 if tf.abs(a) <= delta: 3 loss = a * a / 2 4 else: 5...loss = delta * (tf.abs(a) - delta / 2) 6 return loss 如果照常使用Eager Execution,它完全可以“正常工作”,但是由于Python解释器开销或者没有进行程序优化...使用AutoGraph,原来的这段代码: 1@autograph.convert() 2def huber_loss(a): 3 if tf.abs(a) <= delta: 4 loss =...a * a / 2 5 else: 6 loss = delta * (tf.abs(a) - delta / 2) 7 return loss 在装饰器的作用下变成下面这段: 1def...(a) - delta / 2) 12 return loss, 13 loss = ag__.utils.run_cond(tf.less_equal(tf.abs(a), delta
以下是你想要添加到图中的操作的一个非常简单的示例: def huber_loss(a): if tf.abs(a) <= delta: loss = a * a / 2 else:...loss = delta * (tf.abs(a) - delta / 2) return loss 通过急切执行,它可以“正常工作”,但是由于Python解释器的负担,可能错过的程序优化机会,此类操作可能会很慢...使用AutoGraph,这段代码: @autograph.convert() def huber_loss(a): if tf.abs(a) <= delta: loss = a * a /...2 else: loss = delta * (tf.abs(a) - delta / 2) return loss 由于这个修饰器(decorator),在执行时变为此代码。...(a) - delta / 2) return loss, loss = ag__.utils.run_cond(tf.less_equal(tf.abs(a), delta),
以下是一个非常简单的操作示例: def huber_loss(a): if tf.abs(a) <= delta: loss = a * a / 2 else: loss = delta...* (tf.abs(a) - delta / 2) return loss 使用 Eager Execution,这只是「正确运行」而已,但是此类操作可能会比较慢,因为 Python 解释器众所周知在实现地比较慢...使用 AutoGraph,由于 decorator,下列代码: @autograph.convert() def huber_loss(a): if tf.abs(a) <= delta:...loss = a * a / 2 else: loss = delta * (tf.abs(a) - delta / 2) return loss 在执行时变成如下代码: def tf_...(a) - delta / 2) return loss, loss = ag__.utils.run_cond(tf.less_equal(tf.abs(a), delta),
,实在是厉害的想法,什么时候自己也能写出这种精妙的代码就好了 原地址:简易高效的LeakyReLu实现 代码如下: 我做了些改进,因为实在tensorflow中使用,就将原来的abs()函数替换成了tf.abs...tf.variable_scope(name): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * tf.abs...(x) # 这里和原文有不一样的,我没试验过原文的代码,但tf.abs()肯定是对的 补充知识:激活函数ReLU、Leaky ReLU、PReLU和RReLU “激活函数”能分成两类——“饱和激活函数”
# Nearest Neighbor calculation using L1 Distance # Calculate L1 Distance distance = tf.reduce_sum(tf.abs...None) #减法运算 tf.multiply(x,y,name=None) #乘法运算 tf.div(x,y,name=None) #除法运算 tf.mod(x,y,name=None) #取模运算 tf.abs
y-y_predicted)**2 def huber_loss(y,y_predicted,m=1.0): t = y-y_predicted return 0.5*t**2 if tf.abs...(t)<=m else m*(tf.abs(t)-0.5*m) # 原先的huber_loss def huber_loss1(label, prediction, delta=14.0):...residual = tf.abs(label - prediction) def f1(): return 0.5*tf.square(residual) def f2(): return
box_diff = bbox_pred - bbox_targets in_box_diff = bbox_inside_weights * box_diff abs_in_box_diff = tf.abs
接下来,我们对query的部分进行屏蔽,与屏蔽key的思路大致相同,不过我们这里不是用很小的值替换了,而是直接把填充的部分变为0: query_masks = tf.sign(tf.abs(tf.reduce_sum...key_masks = tf.sign(tf.abs(tf.reduce_sum(keys,axis=-1))) key_masks = tf.tile(tf.expand_dims(key_masks...outputs) outputs = tf.nn.softmax(outputs) # Query Mask query_masks = tf.sign(tf.abs...key_masks = tf.sign(tf.abs(tf.reduce_sum(keys,axis=-1))) key_masks = tf.tile(key_masks,[num_heads...outputs) outputs = tf.nn.softmax(outputs) # Query Mask query_masks = tf.sign(tf.abs
(xs, tf.float32)) with tf.Session(): tf.global_variables_initializer().run() zs_ = tf.where(tf.abs...(zs) < R, zs**2 + xs, zs) not_diverged = tf.abs(zs_) < R step = tf.group( zs.assign(zs
with tf.variable_scope('encode'): with tf.variable_scope('X'): X_lens = tf.reduce_sum(tf.sign(tf.abs...encoded_X = tf.concat(2, outputs) with tf.variable_scope('Q'): Q_lens = tf.reduce_sum(tf.sign(tf.abs...1) _, infer_state = infer_gru(combined_gated_glimpse, infer_state) return tf.to_float(tf.sign(tf.abs
., tf.subtract(tf.abs(tf.subtract(model_output, y_target)), epsilon))) # Declare optimizer my_opt =...tf.matmul(x_data, tf.transpose(x_data)))), tf.transpose(dist)) my_kernel = tf.exp(tf.multiply(gamma, tf.abs...x_data, tf.transpose(prediction_grid)))), tf.transpose(rB)) pred_kernel = tf.exp(tf.multiply(gamma, tf.abs...x_data, tf.transpose(prediction_grid)))), tf.transpose(rB)) pred_kernel = tf.exp(tf.multiply(gamma, tf.abs...x_data, tf.transpose(prediction_grid)))), tf.transpose(rB)) pred_kernel = tf.exp(tf.multiply(gamma, tf.abs
name=None) 减法 tf.multiply (x, y, name=None) 乘法 tf.div (x, y, name=None) 除法 tf.mod (x, y, name=None) 取模 tf.abs
tf.zeros_like(xs, tf.float32)) with tf.Session(): tf.global_variables_initializer().run() zs_ = tf.where(tf.abs...(zs) < R, zs**2 + xs, zs) not_diverged = tf.abs(zs_) < R step = tf.group( zs.assign(zs_)
# get thresholds and apply thresholding abs_mean = tf.reduce_mean(tf.reduce_mean(tf.abs...)) # soft thresholding residual = tf.multiply(tf.sign(residual), tf.maximum(tf.abs
tf.cumsum(1 - y_true_sorted),tf.reduce_sum(1 - y_true_sorted)) ks_value = tf.reduce_max(tf.abs...tf.cumsum(self.false_positives),tf.reduce_sum(self.false_positives)) ks_value = tf.reduce_max(tf.abs
noise_1 * noise_2, w_sigma) 其中变换的代码如下: def f(e_list): return tf.multiply(tf.sign(e_list), tf.pow(tf.abs...noisy_distribution='factorised'): def f(e_list): return tf.multiply(tf.sign(e_list), tf.pow(tf.abs
# get thresholds and apply thresholding abs_mean = tf.reduce_mean(tf.reduce_mean(tf.abs...tflearn.activations.sigmoid(scales)) residual = tf.multiply(tf.sign(residual), tf.maximum(tf.abs
我使用经平滑处理的可微 SMAPE 变体,它在所有实数上都表现良好: epsilon = 0.1 summ = tf.maximum(tf.abs(true) + tf.abs(predicted...) + epsilon, 0.5 + epsilon) smape = tf.abs(predicted - true) / summ * 2.0 ?
领取专属 10元无门槛券
手把手带您无忧上云