(train_step,feed_dict={x:batch_xs,y_:batch_ys})
# 正确的预测结果
# y的形状是(N,10),y_是(N,10)
# 其中N为输入模型的样本数
# tf.argmax...# 假设y_为[[1,0,0,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0]]
# 则tf.argmax...(y_,1)为[0,2,9,0],若tf.argmax(y,1)为【0,0,0,0】
# 则 correct_prediction为[True,False,False,True]
correct_prediction...=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
# 计算预测准确率,都是Tensor
# tf.cast(correct_prediction,tf.float32)...(y_conv,1),tf.argmax(y_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
# 创建session