首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

tensorflow语法【shape、tf.trainable_variables()、Optimizer.minimize()】

相关文章: 【一】tensorflow安装、常用python镜像源、tensorflow 深度学习强化学习教学 【二】tensorflow调试报错、tensorflow 深度学习强化学习教学 【三】...tensorboard安装、使用教学以及遇到的问题 【四】超级快速pytorch安装 ---- trick1---实现tensorflow和pytorch迁移环境教学 张量shape参数理解 shape...参数就是[1,2,3] tf.trainable_variables(), tf.global_variables()的使用 tf.trainable_variables(): 这个函数可以查看可训练的变量...实际上,tf.trainable_variables()是可以通过参数选定域名的,如下图所示: vith tf. variable_ scope(' var' ): w2 = tf.get. variable...与tf.trainable_variables()一样,tf.global_variables()也可以通过scope的参数来选定域中的变量。

45220
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Tensorflow c++ 实践及各种坑

    Tensorflow当前官网仅包含python、C、Java、Go的发布包,并无C++ release包,并且tensorflow官网也注明了并不保证除python以外库的稳定性,在功能方面python...本文重点介绍tensorflow C++服务化过程中实现方式及遇到的各种问题。...实现方案 对于tensorflow c++库的使用,有两种方法: (1) 最佳方式当然是直接用C++构建graph,但是当前c++tensorflow库并不像python api那样full-featured...可参照builds a small graph in c++ here, C++ tensorflow api中还包含cpu和gpu的数字内核实现的类,可用以添加新的op。...问题二: C++ libtensorflow和python tensorflow混用 为验证C++加载模型调用的准确性,利用swig将c++ api封装成了python库供python调用,在同时import

    7K40

    Tensorflow c++实践(使用cmake vs2015 编译tensorflow源码)

    写这篇文章的主要目的是为了总结这一个多月对tensorflow应用到c++语言上面走过的路。因为身边的人都少有使用c++实现tensorflow的使用,都是自己一点坑一点坑踩过来。...我是在Github下载tensorflow源码,编译可以供vs2015使用的tensorflow库,然后将我们项目training得到的.ckpt文件固定成.pb文件,经过c++调用,跑出了想要做到的效果...这里介绍的是如何编译供c++使用的tensorflow库,并且是GPU版本。...tensorflow c++源码编译 参考的博客链接:https://www.cnblogs.com/steven_oyj/p/8259205.html (请复制粘贴,_ 原因会出现404)我就差不多是参考上面这篇博客的...然后c++编译tensorflow就算是成功了。一般的你可以去找个关于c++ tensorflow教程跑一下这个tensorflow源码中的example, 测试一下。

    4.2K100

    教程 | 如何利用C++搭建个人专属的TensorFlow

    选自GitHub 机器之心编译 参与:林川、刘晓坤 作者简单用 TensorFlow 中的计算图解释了机器学习的背后原理,然后列举了数个使用 C++实现 TensorFlow 的好处,如线性代数库的使用...TensorFlow 在 TensorFlow 的代码里,有一个重要的组件,允许你将计算串在一起,形成一个称为「计算图」的东西。...为什么是 C++? 在实际过程中,C++可能并不适合做这类事情。我们可以在像「Oaml」这样的函数式语言中花费更少的时间开发。...然而,使用 C++有很多好处。 Eigen(库名) 举例来说,我们可以直接使用一个叫「Eigen」的 TensorFlow 的线性代数库。这是一个不假思索就被人用烂了的线性代数库。...在 Java 中,有一连串的 add(), divide() 等等是非常难看的。更重要的是,这将让用户更多的关注在「PEMDAS」上,而 C++的操作符则有非常好的表现。

    833100

    Tensorflow加载预训练模型的特殊操作

    在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...假设修改过的卷积层名称包含`conv_,示例代码如下: import tensorflow as tf def restore(sess, ckpt_path): vars = tf.trainable_variables...,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def restore(sess, ckpt_path)...: vars = tf.trainable_variables() model_1_vars = [v for v vars if "model_1" in v.name] model_2_vars...那么使用如下示例代码即可加载: import tensorflow as tf def restore(sess, ckpt_path): vars = tf.trainable_variables(

    2.3K271

    tensorflow实现手写体数字识别

    内容参考自北京大学曹健教授的tensorflow课程,在此感谢 代码原址:https://github.com/cj0012/AI-Practice-Tensorflow-Notes 之前在人工智能课上自己手动搭建过一个...BP神经网络实现MNIST数据集的手写体数字识别,使用的是c++,最终准确率的上限在95%至96%左右(毕竟水平有限)。...可能有人会觉得tensorflow有点过时,现在的大企业不怎么用tensorflow了,但我觉得,对于初学者来说,tensorflow还是不错的选择。...global_step) ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) ema_op = ema.apply(tf.trainable_variables...使用梯度下降算法 ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) ema_op = ema.apply(tf.trainable_variables

    1K20

    【TensorFlow】TensorFlow 的 Logistic Regression

    前面提到了使用 TensorFlow 进行线性回归以及学习率、迭代次数和初始化方式对准确率的影响,这次来谈一下如何使用 TensorFlow 进行 Logistics Regression(以下简称LR...关于LR的理论内容我就不再赘述了,网上有很多资料讲,这里我就写下LR所用的损失函数: [图片] 其实整个程序下来和线性回归差不多,只不过是损失函数的定义不一样了,当然数据也不一样了,一个是用于回归的...,一个是用于分类的。...数据集 数据集不再是经典的MNIST数据集,而是我在UCI上找的用于二分类的数据集,因为我觉得老用经典的数据集不能很好的理解整个程序。...代码 from __future__ import print_function, division import tensorflow as tf import pandas as pd import

    1.6K70

    【TensorFlow】TensorFlow 的线性回归

    前面 有篇博文 讲了讲Ubuntu环境下安装TensorFlow,今天来说一说在TensorFlow中如何进行线性回归。...---- 开始训练 使用TensorFlow训练模型大致是这样的步骤: 1. 设置各种超参数,例如学习率,迭代次数等; 2. 定义变量和模型; 3. 初始化变量; 4. 正式开始训练....废话不多说上完整代码,代码里有注释: from __future__ import print_function, division import tensorflow as tf import pandas...---- 几个问题 在迭代次数相同的情况下,调节学习率能非常有效的改变损失的下降速度,刚开始学习率是0.001,结果非常的不好,损失比现在的大0.3e09左右,一步一步加大学习率效果显著,即使现在的2也不算大...TensorFlow 的定制性比较强,更为底层),我用 sklearn 实现了一次,效果很好,基本就是傻瓜式操作,效果如图, ?

    71820

    【TensorFlow】TensorFlow的线性回归

    前面 有篇博文 讲了讲Ubuntu环境下安装TensorFlow,今天来说一说在TensorFlow中如何进行线性回归。...训练部分数据 模型 [图片] 开始训练 使用TensorFlow训练模型大致是这样的步骤: 1. 设置各种超参数,例如学习率,迭代次数等; 2. 定义变量和模型; 3. 初始化变量; 4....废话不多说上完整代码,代码里有注释: from __future__ import print_function, division import tensorflow as tf import pandas...几个问题 在迭代次数相同的情况下,调节学习率能非常有效的改变损失的下降速度,刚开始学习率是0.001,结果非常的不好,损失比现在的大0.3e09左右,一步一步加大学习率效果显著,即使现在的2也不算大(对于这个问题...TensorFlow 的定制性比较强,更为底层),我用 sklearn 实现了一次,效果很好,基本就是傻瓜式操作,效果如图, ?

    1.4K90

    【干货】TensorFlow 2.0官方风格与设计模式指南(附示例代码)

    本文转自专知 【导读】TensorFlow 1.0并不友好的静态图开发体验使得众多开发者望而却步,而TensorFlow 2.0解决了这个问题。...但是便携式的TensorFlow要在没用Python解释器的环境下运行 - 移动端、C++和JS。...为了避免用户重写代码,当使用@tf.function时,AutoGraph会将Python结构的子集转换为TensorFlow等价物: for/while -> tf.while_loop (支持break...下面介绍TensorFlow 2.0的风格和设计模式: 将代码重构为一些小函数 ---- TensorFlow 1.X的常见用例模式是"kitchen sink"策略,所有可能的计算都被事先统一构建好,...和Python控制流 ---- AutoGraph提供了一种将依赖数据的控制流转换为图模式的等价物,如tf.cond和tf.while_loop。

    1.8K10

    tensorflow的学习笔记--初步认识tensorflow

    几个概念 TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,由谷歌公司开发并开源免费使用...在接触到的智能机器中,我们都需要先输入一段抽象的数据(语音,图片等),然后机器识别结果,输出我们想要的内容。...在tensorflow中使用张量代表数据(可以简单理解为参数),使用计算图来搭建神经网络,使用会话执行计算图,优化对应的权重。 首先我们先介绍张量: 张量 多维数组和列表。...多维数组 tensorflow的数据的类型很多,与日常编程的数据类型也有点相似之处,先不一一介绍,先看看怎么使用tensorflow(使用pip命令安装对应的依赖模块) import tensorflow...其中:Y=XW=w_1x_1+w_2x_2 具体使用tensorflow实现代码如下: import tensorflow as ts x=ts.constant([[1.0,2.0]])# 一行两列

    47520

    安装GPU加速的tensorflow 卸载tensorflow

    我们的tensorflow会调用cuda的接口,利用显卡帮助我们运算程序 而CUDNN是为了加速神经网络用的 二: 卸载TensorFlow 先介绍卸载, 如果你的tensorflow是用pip安装的,...注意:这个版本搭配不是唯一的,首先你要了解你电脑的显卡是什么类型,然后根据你的显卡类型选择cuda的版本,在根据cuda的版本选择cudnn的版本,最后再根据前面两种的搭配选择tensorflow的版本...根据你想要的TensorFlow的版本,那么只需要修改tensorflow-1.7.0-cp36-none-linux_x86_64.whl 比如,我要TensorFlow-1.0.1版本,那么上面官网地址就修改为...bin/gcc 30 sudo update-alternatives --set cc /usr/bin/gcc sudo update-alternatives --install /usr/bin/c+...+ c++ /usr/bin/g++ 30 sudo update-alternatives --set c++ /usr/bin/g++ 查看Ubuntu 16.04的Kernel,GCC和GLIBC

    1K50
    领券