在深度学习领域中,存在很多专业名词,第一次看的时候总会很懵逼~后面慢慢看得时候才会有那么感觉,但是总觉得差点意思。今天我们要说的一个专业名词,就叫做Attention机制!
前文介绍了根据传入参数的张量维度决定其实现功能的 torch.matmul 函数。torch.matmul 函数功能强大,虽然可以使用其重载的运算符 @,但是使用起来比较麻烦,并且在实际使用场景中,常用的矩阵乘积运算就那么几种。为了方便使用这些常用的矩阵乘积运算,PyTorch 提供了一些更为方便的函数。
首先,这个论文中的模块,叫做non-local block,然后这个思想是基于NLP中的self-attention自注意力机制的。所以在提到CV中的self-attention,最先想到的就是non-local这个论文。这个论文提出的动机如下:
基于条件的卷积GAN 在那些约束较少的类别中生成的图片较好,比如大海,天空等;但是在那些细密纹理,全局结构较强的类别中生成的图片不是很好,如人脸(可能五官不对应),狗(可能狗腿数量有差,或者毛色不协调)。
这篇文章描述了CNN的自注意力。对于这种自注意力机制,它可以在而不增加计算成本的情况下增加感受野。
有一种Attention机制为对各个feature map通道进行加权,可以参考Tensorflow的图像操作(四) 的SENet,这里我们主要讨论的是Self-Attention。
其中两个必选参数num_embeddings表示单词的总数目,embedding_dim表示每个单词需要用什么维度的向量表示。而nn.Embedding权重的维度也是(num_embeddings, embedding_dim),默认是随机初始化的
3D数据对于自动驾驶汽车,自动驾驶机器人,虚拟现实和增强现实至关重要。与以像素阵列表示的2D图像不同,它可以表示为多边形网格,体积像素网格,点云等。
深度学习算法在过去几年里取得了巨大的进展,成为了计算机视觉、自然语言处理和语音识别等领域的重要技术。其中,基于注意力机制的神经网络是一种强大的工具,它在深度学习算法中发挥着重要的作用。本文将介绍基于注意力机制的神经网络在深度学习算法中的应用,并讨论其优势和局限性。
通过前两章对于triton的简单介绍,相信大家已经能够通过从源码来安装triton,同时通过triton提供的language前端写出自己想要的一些计算密集型算子。这章开始,我们通过构建一套比较标准的batch gemm的benchmark,来看看目前这些主流的代码生成工具,高性能模板库,与厂商提供的vendor library的差距。因为只有明确了目前的差距,后期关于针对性的优化才能做到点上。这一章,我将使用一个batch的gemm作为例子,来看看triton目前对其的优化能力。选batch gemm的原因是因为目前的LLM中不可避免会有对应的attention操作,而attention操作中,核心的计算密集型算子就是batch的gemm,如果你能够对batch的gemm有一个很好的优化思路,那么在MLSys中大部分的算子优化类的工作对你来说将不会显得那么无从下手。
计算机视觉(computer vision)中的注意力机制(attention)的基本思想就是想让系统学会注意力——能够忽略无关信息而关注重点信息。
在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态。将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列。然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降。
准备好探索3D分割的世界吧!让我们一起完成PointNet的旅程,探索一种理解3D形状的超酷方式。PointNet就像是计算机观察3D物体的智能工具,特别是对于那些在空间中漂浮的点云。与其他方法不同,PointNet直接处理这些点,不需要将它们强行转换成网格或图片。
text_to_be_present_in_element_value :某个元素值包含某文字
我们观察事物时,之所以能够快速判断一种事物(当然允许判断是错误的), 是因为我们大脑能够很快把注意力放在事物最具有辨识度的部分从而作出判断,而并非是从头到尾的观察一遍事物后,才能有判断结果. 正是基于这样的理论,就产生了注意力机制。
编者按:自2017年提出以来,Transformer在众多自然语言处理问题中取得了非常好的效果。它不但训练速度更快,而且更适合建模长距离依赖关系,因此大有取代循环或卷积神经网络,一统自然语言处理的深度模型江湖之势。我们(赛尔公众号)曾于去年底翻译了哈佛大学Alexander Rush教授撰写的《Transformer注解及PyTorch实现》一文,并获得了广泛关注。近期,来自荷兰阿姆斯特丹大学的Peter Bloem博士发表博文,从零基础开始,深入浅出的介绍了Transformer模型,并配以PyTorch的代码实现。我非常喜欢其中对Self-attention(Transformer的核心组件)工作基本原理进行解释的例子。此外,该文还介绍了最新的Transformer-XL、Sparse Transformer等模型,以及基于Transformer的BERT和GPT-2等预训练模型。我们将其翻译为中文,希望能帮助各位对Transformer感兴趣,并想了解其最新进展的读者。
Attention 机制最早的提出是针对序列模型的,出处是 Bengio 大神在2015年的这篇文章:
在第2章中,我们看到了微调和评估一个Transformer所需要的东西。 现在让我们来看看它们在引擎盖下是如何工作的。 在本章中,我们将探讨Transformer模型的主要组件以及如何使用PyTorch实现它们。 我们还将提供关于如何在TensorFlow中做同样事情的指导。 我们将首先专注于建立注意力机制,然后添加必要组件,使Transformer编码器工作。 我们还将简单了解一下编码器和解码器模块之间的结构差异。 在本章结束时,你将能够自己实现一个简单的Transformer模型!
从DETR到ViT等工作都验证了Transformer在计算机视觉领域的潜力,那么很自然的就需要考虑一个新的问题,图像的特征提取,究竟是CNN好还是Transformer好?
来源丨https://zhuanlan.zhihu.com/p/410776234
之前和大家分享了动手实现wide and deep和deepfm,今天和大家分享动手实现DCN。和之前连个方法类似,该方法也是考虑记忆和泛化两部分,泛化部分同样采用DNNs;而记忆部分采用了不同的方式,wide & deep和deepfm我们可以理解为都进行了一次交互,而DCN进行多次交互,每次进行特征的显式交叉,经过一层全连接层后加上原始输入(残差的思想),具体如下图所示。不过有个缺点是因为cross interaction之后得到的是将1n的向量变成nn的矩阵,所以占用内存会增大很多,需要考虑向量的大小。
注意力机制(Attention Mechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。为了合理利用有限的视觉信息处理资源,人类需要选择视觉区域中的特定部分,然后集中关注它。例如,人们在阅读时,通常只有少量要被读取的词会被关注和处理。综上,注意力机制主要有两个方面:决定需要关注输入的哪部分;分配有限的信息处理资源给重要的部分。
像卷积、池化、激活函数、批量归一化、全连接等等,只要把握好输入的维度和输出的维度,慢慢定义就好了。
模型的整体结构 相关代码 import torch import torch.nn as nn from transformers import BertModel, BertPreTrainedMo
RNN (Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.
针对传统的多类别图像分类任务,经典的CNN网络已经取得了非常优异的成绩,但在处理细粒度图像数据时,往往无法发挥自身的最大威力。
张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。
摘要:DoubleAttention注意力助力YOLOv5,即插即用,性能优于SENet
注:张量默认创建int64(长整型)类型,整数型的数组默认创建int32(整型)类型。
NLP领域中, 当前的注意力机制大多数应用于seq2seq架构, 即编码器和解码器模型。
PyTorch 将被安装在 anaconda3/lib/python3.7/site-packages/torch/目录下。
张皓:南京大学计算机系机器学习与数据挖掘所(LAMDA)硕士生,研究方向为计算机视觉和机器学习,特别是视觉识别和深度学习。个人主页:
在本文中,我们将通过化学的视角探索图卷积网络,我们将尝试将网络的特征与自然科学中的传统模型进行比较,并思考为什么它的工作效果要比传统的方法好。
一提到池化操作,大部分人第一想到的就是maxpool和avgpool,实际上还有很多种池化操作。
收集自RepDistiller中的蒸馏方法,尽可能简单解释蒸馏用到的策略,并提供了实现源码。
链接 | https://zhuanlan.zhihu.com/p/59205847
最近在训练大规模数据时,遇到一个【添加复杂数据增强导致训练模型耗时长】的问题,在学习了 MMDetection 和 MMCV 底层关于 PyTorch 的 CUDA/C++ 拓展之后,我也将一些复杂数据增强实现了 GPU 化,并且详细总结了一些经验,分享此篇文章和工程,希望与大家多多交流。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本专栏用于记录关于深度学习的笔记,不光方便自己复习与查阅,同时也希望能给您解决一些关于深度学习的相关问题,并提供一些微不足道的人工神经网络模型设计思路。 专栏地址:「深度学习一遍过」必修篇 目录 1 实战内容简介 2 数据集读取 2.1 dataset 2.2 dataloader 3 模型搭建 3.1 基准模型 3.2 与基准模型相对应的双线性模型 4 性能差异比较 4.1 tensorboard查看测试集准确率差异 4.2 耗时比较(单位:秒) ---- 1 实战内容简介 数据集:CUB-200,共
本文是PyTorch常用代码段合集,涵盖基本配置、张量处理、模型定义与操作、数据处理、模型训练与测试等5个方面,还给出了多个值得注意的Tips,内容非常全面。
第1篇是2016年的Deep&Wide,第2篇是2017年的Deep&Cross(DCN),第3篇是2020年的DCN-V2.
爱因斯坦求和约定(einsum)提供了一套既简洁又优雅的规则,可实现包括但不限于:向量内积,向量外积,矩阵乘法,转置和张量收缩(tensor contraction)等张量操作,熟练运用 einsum 可以很方便的实现复杂的张量操作,而且不容易出错。
【GiantPandaCV导读】近几年,Attention-based方法因其可解释和有效性,受到了学术界和工业界的欢迎。但是,由于论文中提出的网络结构通常被嵌入到分类、检测、分割等代码框架中,导致代码比较冗余,对于像我这样的小白很难找到网络的核心代码,导致在论文和网络思想的理解上会有一定困难。因此,我把最近看的Attention、MLP和Re-parameter论文的核心代码进行了整理和复现,方便各位读者理解。本文主要对该项目的Attention部分做简要介绍。项目会持续更新最新的论文工作,欢迎大家follow和star该工作,若项目在复现和整理过程中有任何问题,欢迎大家在issue中提出,我会及时回复~
之前我解析过RWKV-4的结构和代码实现(https://zhuanlan.zhihu.com/p/653327189),这里再把它和RWKV5,RWKV6放在一起进行对比解析一下。
领取专属 10元无门槛券
手把手带您无忧上云