编译环境:ubuntu16.04 LTS Opencv版本:opencv4.0.1+opencv4.0.1 contribute
本篇概览 这是一篇笔记,记录了纯净的Ubuntu16桌面版电脑上编译、安装、使用OpenCV4的全部过程,总的来说分为以下几部分: 安装必要软件,如cmake 下载OpenCV源码,包括opencv和opencv_contrib,并且解压、摆好位置 运行cmake-gui,在图形化页面上配置编译项 编译、安装 配置环境 验证 环境 环境信息如下: 操作系统:Ubuntu16.04桌面版 OpenCV:4.1.1 注意:本文全程使用非root账号操作 废话少说,直接在新装的Ubuntu16桌面版开始操作 换源
为了学习使用Faster R-CNN,需要安装OpenCV +Python环境,之前已经在CentOS下安装好了python2.7。yum安装的opencv是2.0版本,安装了opencv-python,但python中import cv2仍会报错,无法满足需要。所以决定用编译方式安装opencv。
sudo apt-get install Python-dev python-numpy
前面我们已经介绍了如何在Windows系统中安装OpenCV 4。虽然本书中程序代码主要在Windows运行,但是相信有一些读者使用Ubuntu系统进行计算机视觉的学习,因此本小节将介绍如何在Ubuntu系统中安装OpenCV 4.1。如果你仅仅是在Windows系统中使用OpenCV 4.1,可以跳过本小节内容。对于Ubuntu版本的介绍这里不做过多的说明,感兴趣读者可以自行查询相关内容,笔者使用的是Ubuntu 16.04,因此将会介绍如何在该系统中安装OpenCV 4.1。可能有读者使用Ubuntu 14.04或者Ubuntu 18.04,不过安装OpenCV 4.0的方法和步骤都是相似的。
1. build-essential 软件包,为编译程序提供必需软件包的列表信息,这样软件包才知道头文件、库函数在哪里。
今天主体是Linux 环境下配置opencv环境,如有不妥的地方,恳请大家指正。根据网上的教程并结合自己的实际操作——总结如下:
最近有个科研课题需要在树莓派上做一系列验证,但是实验的程序是依赖OpenCV库的(最重要我们修改了库源码),而在树莓派上编译OpenCV源码很费时间,因此我只好使用交叉编译的方法来编译源程序。刚开始我们觉着网上材料大片,这部分的问题应该不大。可到操刀干活的时候,我才发现网上很多方法不仅繁琐,而且有的甚至还不是那么一回事,没看到一篇完全适合我的情况的。于是,我花了一天半左右的时间,整理这些材料并结合一点TRIZ原理,完成了这项任务。现在分享一下我的方案总结,不过我的方案不尽完善,欢迎大家指点修正,帮助后人节省时间。
首先,OpenCV 有在ubuntu上安装的官方文档:OpenCV: Installation in Linux
OpenCV是一个跨平台的计算机视觉库,可以运行在Windows、Linux、MacOS等操作系统上。OpenCV提供了众多语言的接口,其中就包含了Python,Python是一门上手容易、使用起来十分让人愉悦的语言,利用Python学习OpenCV,相信能更快的获得效果。
因为工作需要,我想把之前Jetson Orin Nano上OpenCV4.5.4 升级到OpenCV4.8。先到这里下载脚本
很多人经常会问我是否有在Ubuntu系统化下开发OpenCV C++应用的教程,其实我一直没有,然后我有几块开发板都是基于Linux的,有Jetson系列的开发板,所以我以前写过一篇文章如何在Jetson开发板上编译OpenCV源码与编译运行OpenCV C++应用程序。我现在还有一块Alxboard开发板是英特尔家族的,安装的是操作系统是Ubuntu20的系统,本身没有自带OpenCV C++支持,所以就用这个开发板给大家演示一下如何在乌班图系统下编译OpenCV4.8源码与如何编译执行OpenCV C++应用。
经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《从零学习OpenCV 4》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。
本文介绍了如何使用Jetson TX1开发板通过V4L2和OpenCV3.1实现USB摄像头图像的采集和实时显示。首先介绍了V4L2的基础知识和摄像头驱动配置,然后介绍了OpenCV的图像解码和显示功能。最后,通过具体的示例代码展示了如何编译和运行程序,并总结了程序的结果。
sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg62-dev libtiff4-dev cmake libswscale-dev libjasper-dev
看到很多人在小哪吒上编译Opencv,自己也尝试过编译了几次,各位开发者在编译的时候都可能会遇到不同的问题,现将其整理出来方便后面新来的开发者查阅。
我们来说说第二类,需要做的事情是先编译opencv的源码、再编译matlab可用的mex文件夹,这两步的编译器必须是同一个,而最近几年的新版本matlab都推荐使用MinGW-w64编译器来使用mex、可是mexopencv提供的编译辅助函数在Windows系统上默认使用Visual Studio或者Windows SDK来编译,如果觉得自己需要Visual Studio的其他功能,安装一下也是挺好的
本文介绍了Jetson TX1开发笔记(五),主要讲述了使用OpenCV3.1和CUDA7.5,在Jetson TX1上实时图像采集和处理的过程。作者依次介绍了环境搭建、OpenCV3.1编译、CUDA7.5编译、摄像头采集、图像处理、图像显示、以及创建简单的摄像头程序。在编译过程中遇到的一些问题和解决方法也进行了介绍。
OpenCV(Open Source Computer Vision Library) 是一个开源的计算机视觉库,支持所有主流操作系统上的 C++ , Python,和 Java。它可以发挥多核进程和 GPU 加速,用于实时操作。
原文:Github 项目 - OpenPose 在 Ubuntu 的安装 - AIUAI
对于caffe的安装过程,可以说是让我终身难忘。两个星期就为了一个caffe,这其中的心路历程只有自己懂。从实验室的低配置显卡开始装Ubuntu,到编译caffe,解决各种报错,这个过程花费了一周的时间。把cuda版本和N卡驱动版本一降再降,仍然不管用。因此手剁了一台8000的高配置主机。之后为了平衡实验室项目,首先花了半天时间将win10下的相关和其他杂七杂八的软件配置。只有以为只需Ubuntu安装好,caffe编译成功即可,不想安装完Ubuntu之后,却电脑没有引导启动项,把网上的方法试了个遍,却仍无法解决。因此听到一种说法是,win10的启动路径覆盖了Ubuntu启动路径。因此,决定重新再来,将自己的固态和机械全部初始化,首先在固态上安装Ubuntu16.04,在机械上安装Win10,对于双系统的安装请参照我的另一篇博客:Win10与Ubuntu16.04双系统安装教程。在这种情况下参加那个caffe安装成功。请注意,对于双系统建议先安装Ubuntu,并将caffe编译成功之后在去机械上安装Win10。Caffe的安装教程请参照如下安装教程。
项目地址:https://github.com/ShiqiYu/libfacedetection
之前2020年5月写过一次,时隔3年多,有机会再重新写一次。相比之前,应该是有一点儿进步的。之前是使用默认安装路径,所以无需配置共享库的搜索路径。这次是自定义安装路径,略有区别。随着写程序的时间增长,编译开源库时,更加青睐自定义安装路径,方便添加与移除。
最近的学习涉及到 KCF 追踪算法,然而在我的 OpenCV 中找不到 KCF 的头文件,查阅资料发现还需要安装 OpenCV_contrib 这个模块,但又不想重装我的 OpenCV,于是就在我的 WSL(ubuntu18.04) 里面重新装一个 OpenCV,顺便记录一下坑,以防再掉进去
Opencv大家很熟悉了,经典的图像处理库,Opencv在Windows下安装是很简单的,只需要配置DLL即可。但是在Linux下,因为Linux各种发行版本多种多样,所以我们只有自己通过编译源码的方式来安装Opencv了,源码安装会自动根据你当前的Ubuntu系统中安装的组件来编译Opencv源码,所以说你编译好的这份Opencv库是独一无二的,移到别的地方就不行了哦。
首先,由于本人使用了ROS,因此在安装ROS的时候安装了ros-indigo-destop-full顺便安装了版本2.4.8的opencv,因为ROS里面的一些文件需要依赖于该版本的opencv,例如cv_bridge和image_pipeline。所以卸掉opencv2.4.8再装opencv3.3(因为有些代码需要用到opencv3)貌似不明智。故我们在原有的opencv2.4.8的版本基础上安装opencv3.3,因此这里涉及到了ubuntu多版本opencv共存问题。
最近在重构人脸识别的项目,通过opencv打开本地摄像头识别面部的时候,发现非常的卡。查了一些资料,有说是帧率的问题,我重新设置了一下帧率,毫无作用。记得以前在运行目标检测方面的时候,也遇到过此类的问题,当时的解决方案就是通过opencv官网下载没有编译过的版本在本地进行编译,编译完成后再运行就不卡了,因为我电脑上另一个系统ubuntu是编译过的,索性就将代码丢在ubuntu上运行了一下,发现流畅的很。所以就想着给编译的过程记录一下……
最近还是会有很多学习爱好者问我安装caffe的一些问题,虽然现在TF很是受大家的喜欢,但是还是会有很多学习者用着caffe。为了让更多的人少走弯路,网上也有很多教程,我自己来写一下我以前安转的过程与遇到的问题,可以给那些初学者一些建议,希望采纳,如有不对之处,望指正,谢谢! 第一部分:Ubuntu14.04桌面版下载及安装(我是通过U盘安装的,我用工具是UltraISO--特别好用,网上有很多教程,这个不用太过于详细书写) 第二部分:nvidia-cuda-toolkit下载及安装 CUDA 8.0 Do
用opencv4时,用到了cv::VideoCapture就会出错。编译遇到了下列问题:
OpenCV源码下载地址: https://opencv.org/releases/
需要的编译环境 ■ [compiler] sudo apt-get install build-essential
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
做测试时需要用OpenCV。虽然网络上有大量的关于编译OpenCV的教程,但是还是遇到了问题。因此记录了编译的过程,希望以后能更加顺利。
就像许多开发人员一样,我也经常使用别人的工作成果(Medium 上的文章、GitHub 上的代码等),因此也很乐意与社区分享我的成果。写文章不仅是对社区的一种回报,还可以让你找到志趣相投的人,在一个狭小的领域内得到专业人员的指教,并进一步加深你对研究领域的理解。
1、我直接运行FFD,发现确实报错了。可能是作者用到了OpenCV3.2来编译,而我电脑上装的是4.5版本,只有libopencv_calib3d.so.4.5。我重新下载了3.2.0版本并编译。
OpenCV-4.0.0已经放出来一阵日子了,很有新功能新特性值得尝试,由于MacOS上的brewhome包中编译好的OpenCV版本只有3.4.3,为了在MacOS上安装最新的OpenCV,只好走源码编译这条路了。
OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。
该文章介绍了一个基于Qt和OpenCV的图像处理小软件,包括软件的安装、使用示例和代码下载。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/details/77933916
如今开源生态甚好,享受着便利的同时自然也要承担一些烦恼,每一个开发人员都遇到过各种各样的库的问题,通常都跟版本有关,软硬件的都有,今天有三来随便聊聊怎么应对,仅仅只是个人习惯。
SSD失败之后就挺失望的,而且莫名其妙,于是转向YOLO了,其实object detection领域可选的模型并不多,RCNN系列我是大概看过的,还写过:RCNN系列,但是这种location和classification分开的思路,要达到实时的话我的硬件条件肯定是不可能的。YOLOV3我是在TX2上跑过的:YOLOV3-TX2跑起来,而且YOLO是有简化版本的模型的,对于简单应用应该是够了。 因为以前跑过,整体的流程走下来还算比较顺利,比起SSD来说,训练时要修改的代码也比较少,可能留给犯错的概率就少一些。 我分以下几个部分:
一、安装ubuntu 1、下载ubuntu镜像文件 Download Ubuntu Desktop 2、制作启动光盘 如果是windows操作系统:插入空白dvd光盘,在iso文件上右键,选择“刻录光盘映像” 参考windows7中把ISO文件轻松刻录成光盘的方法(图文教程) 如果是ubuntu系统:Ubuntu14.04系统下,如何将.iso文件刻录到CD/DVD光盘 3、安装 二、搜狗输入法安装 1、参考Ubuntu 16.04 LTS安装sogou输入法详解 注意:fcitx configure未出现
OpenCV是一个跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。
本教程将介绍如何使用 OpenCV OCR。我们将使用 OpenCV、Python 和 Tesseract 执行文本检测和文本识别。
这篇博客介绍在Linux中的gcc和g++编译环境下如何使用cmake来编译OpenCV源代码。我基本是按照OpenCV官方的说明文档,一步步地进行的,所以表述不清楚的地方还请参照原文。
以上这篇ubuntu14.04安装opencv3.0.0的操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考。
概述 由于需要在Ubuntu 16.04安装多个深度学习框架所以通过博客记录一下安装过程中的坑以及一些关键步骤。这个时候我们需要安装自己需要包装。下面我们通过一步一步开始安装自己数据。记录安装了如下软件和支持: * Cuda 9.1 * cuDnn 9.0 * OpenCV 3.4 Support Python2.7 Python3.4 Cuda OpenGL OpenBLAS * Mxnet Pytorch Tensorflow 安装 安装预编译包 我们先来安装cuda,首先通过官网下载你所需要
基于OpenCV DNN实现YOLOv8推理的好处就是一套代码就可以部署在Windows10系统、乌班图系统、Jetson的Jetpack系统,不用改任何代码,只需要辅助简单的CMake脚本即可。作者基于OpenCV4.8 DNN实现了两个推理类分别支持 OBB旋转对象检测与姿态评估,一键支持windows10、乌班图、Jetpack三个系统上推理部署。
领取专属 10元无门槛券
手把手带您无忧上云