首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    单细胞分析:多模态 reference mapping (1)

    本文[1]介绍了如何在Seurat软件中将查询数据集与经过注释的参考数据集进行匹配。以一个实例来说,我们把10X Genomics公司早期发布的一个包含2700个外周血单核细胞(PBMC)的单细胞RNA测序(scRNA-seq)数据集,与我们最近创建的一个使用228种抗体测量的、包含162,000个PBMC的CITE-seq参考数据集进行匹配。这个例子用来说明,在参考数据集的帮助下进行的有监督分析,是如何帮助我们识别那些仅通过无监督分析难以发现的细胞状态。在另一个例子中,我们展示了如何将来自不同个体的人类骨髓细胞(Human BMNC)的人类细胞图谱(Human Cell Atlas)数据集,有序地映射到一个统一的参考框架上。

    01

    深度学习系列(二)卷积神经网络模型(从LeNet-5到Inception V4)

    卷积神经网络上目前深度学习应用在图像处理和自然语言处理的非常具有代表性的神经网络,其经历了不断的优化发展,性能越来越强。在图像处理、计算机视觉领域的应用包括图像特征提取、目标分类、目标分割、目标识别等。相比于传统的神经网络需要将一定的特征信息作为输入,卷积神经网络可以直接将原始图像或经过预处理之后的图像作为网络模型的输入,一个卷积神经网络通常包括输入输出层和多个隐藏层,隐藏层通常包括卷积层和RELU层(即激活函数)、池化层、全连接层和归一化层等。卷积神经网络中有三个基本的概念:局部感受野(Local Receptive Fields)、共享权值(Shared Weights)、池化(Pooling)。 (1)局部感受野。对于全连接式的神经网络,图像的每一个像素点连接到全连接的每一个神经元中,造成大量的计算量,而卷积神经网络则是把每一个卷积核的点只连接到图像的某个局部区域,从而减少参数量。 (2)共享权值。在卷积神经网络的卷积层中,神经元对应的权值是相同的,由于权值相同,因此可以减少训练的参数量。 (3)池化。类似于人的视觉观察物体原理,关注点由大到小,首先输入图像往往都比较大,在卷积过程中通过不断提取特征,并且经过池化操作来对图像进行缩小,同时提取低阶和高阶的抽象特征信息。 卷机的原理和各种卷积的变种在之前的文章里提过。(深度学习系列(一)常见的卷积类型)

    03

    基于内容的图像检索技术综述-CNN方法

    传统方法在图像检索技术上一直表现平平。比如传统方法常用的SIFT特征,它对一定程度内的缩放、平移、旋转、视角改变、亮度调整等畸变,都具有不变性,是当时最重要的图像特征提取方法之一。然而SIFT这类算法提取的特征还是有局限性的,在ImageNet ILSVRC比赛的最好结果的错误率也有26%以上,而且常年难以产生突破。而图像检索的发展目标是希望模型又快又准,因此兴起了基于CNN的方法,从原来AlexNet、VGGnet,到体积小一点的Inception、Resnet系列,再到DenseNet系列无不体现出了这一趋势。和传统方法一样,CNN方法也是对图片提取特征,比如CNN网络中的一个feature map就可以看做是一个类似SIFT的向量。

    03

    基于内容的图像检索技术综述-CNN方法

    传统方法在图像检索技术上一直表现平平。比如传统方法常用的SIFT特征,它对一定程度内的缩放、平移、旋转、视角改变、亮度调整等畸变,都具有不变性,是当时最重要的图像特征提取方法之一。然而SIFT这类算法提取的特征还是有局限性的,在ImageNet ILSVRC比赛的最好结果的错误率也有26%以上,而且常年难以产生突破。而图像检索的发展目标是希望模型又快又准,因此兴起了基于CNN的方法,从原来AlexNet、VGGnet,到体积小一点的Inception、Resnet系列,再到DenseNet系列无不体现出了这一趋势。和传统方法一样,CNN方法也是对图片提取特征,比如CNN网络中的一个feature map就可以看做是一个类似SIFT的向量。

    05

    Yolov8改进:用于微小目标检测的上下文增强和特征细化网络ContextAggregation,助力小目标检测

    摘要 卷积神经网络(CNNs)在计算机视觉中无处不在,具有无数有效和高效的变化。最近,Container——最初是在自然语言处理中引入的——已经越来越多地应用于计算机视觉。早期的用户继续使用CNN的骨干,最新的网络是端到端无CNN的Transformer解决方案。最近一个令人惊讶的发现表明,一个简单的基于MLP的解决方案,没有任何传统的卷积或Transformer组件,可以产生有效的视觉表示。虽然CNN、Transformer和MLP-Mixers可以被视为完全不同的架构,但我们提供了一个统一的视图,表明它们实际上是在神经网络堆栈中聚合空间上下文的更通用方法的特殊情况。我们提出了Container(上下文聚合网络),一个用于多头上下文聚合的通用构建块,它可以利用Container的长期交互作用,同时仍然利用局部卷积操作的诱导偏差,导致更快的收敛速度,这经常在CNN中看到。我们的Container架构在ImageNet上使用22M参数实现了82.7%的Top-1精度,比DeiT-Small提高了2.8,并且可以在短短200个时代收敛到79.9%的Top-1精度。比起相比的基于Transformer的方法不能很好地扩展到下游任务依赖较大的输入图像的分辨率,我们高效的网络,名叫CONTAINER-LIGHT,可以使用在目标检测和分割网络如DETR实例,RetinaNet和Mask-RCNN获得令人印象深刻的检测图38.9,43.8,45.1和掩码mAP为41.3,与具有可比较的计算和参数大小的ResNet-50骨干相比,分别提供了6.6、7.3、6.9和6.6 pts的较大改进。与DINO框架下的DeiT相比,我们的方法在自监督学习方面也取得了很好的效果。

    03
    领券