activations', x)
#tf.summary.histogram(tags, values, collections=None, name=None) 用来显示直方图信息
tf.summary.scalar...(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
#tf.summary.scalar(tags, values, collections=...tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar...for l in losses + [total_loss]:
# 将每个loss命名为raw,并将损失的移动平均命名为初始=始损失
tf.summary.scalar(l.op.name...+ ' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op