第145章 XData关键字 - XMLNamespace指定XData块所属的XML名称空间。...用法要指定XData块所属的XML名称空间,请使用如下语法:XData name [ XMLNamespace = "namespaceURL" ] { }其中namespaceURL是XML名称空间的...详情该关键字指定XData块所属的XML名称空间。默认如果省略这个关键字,则该XData块的内容不属于任何名称空间。...示例XData MyXData [ XMLNamespace = "http://www.mynamespace.org" ]{}第146章 Storage关键字 - DataLocation指定该类的数据存储位置
C51单片机中data、idata、xdata、pdata的区别 data: 固定指前面0x00-0x7f的128个RAM,可以用acc直接读写的,速度最快,生成的代码也最小。...(不重要的补充:c中idata做指针式的访问效果很好) xdata: 外部扩展RAM,一般指外部0x0000-0xffff空间,用DPTR访问。
): seed = [[],float("inf")] sequence = random.sample(list(range(1,Xdata.shape[0]+1)), Xdata.shape...[0]) sequence.append(sequence[0]) seed[0] = sequence seed[1] = distance_calc(Xdata, seed)...[0]): for j in range(0, Xdata.shape[1]): if (i !...(Xdata, city_tour): m = Xdata.copy(deep = True) for i in range(0, Xdata.shape[0]): for...j in range(0, Xdata.shape[1]): m.iloc[i,j] = (1/2)*(Xdata.iloc[0,j]**2 + Xdata.iloc[i,0]
:2181,node97.xdata:2181,node98.xdata:2181 -cmd get /infra-solr/configs/collection5 下载zookeeper上的某文件:.../usr/lib/ambari-infra-solr/server/scripts/cloud-scripts/zkcli.sh -zkhost node96.xdata:2181,node97.xdata...:2181,node97.xdata:2181,node98.xdata:2181 -cmd makepath /infra-solr/configs/collection1 修改zookeeper的znode...xdata:2181,node98.xdata:2181 -cmd put /infra-solr/configs/collection10 "123" 删除zookeeper的znode /usr/lib.../ambari-infra-solr/server/scripts/cloud-scripts/zkcli.sh -zkhost node96.xdata:2181,node97.xdata:2181,
第142章 XData关键字 - Internal指定这个XData块是否是内部的(不在类文档中显示)。 注意,类文档目前根本没有显示XData。...用法要指定这个XData块是内部的,请使用以下语法:XData name [ Internal ] { }否则,忽略该关键字或将Not放在该关键字之前。详情类文档中不显示内部类成员。...注意,类文档目前根本没有显示XData块。第143章 XData关键字 - MimeType指定XData块的MIME类型。...详情该关键字指定XData块内容的MIME类型。默认默认的MIME类型是text/xml第144章 XData关键字 - SchemaSpec指定用于验证此XData块的XML模式。...详情该关键字指定可以根据其验证XData块的XML模式。默认如果省略这个关键字,XData块就不能提供一个XML模式来验证其内容。
= curve_fit(linear_func, xdata, ydata) yfit = linear_func(xdata, *popt) # 绘图 plt.plot(xdata, ydata,...ydata = 2.5 * xdata**2 + 1.0 + np.random.normal(size=len(xdata)) # 多项式拟合 p = np.polyfit(xdata, ydata..., 2) yfit = np.polyval(p, xdata) # 绘图 plt.plot(xdata, ydata, 'o', label='Data') plt.plot(xdata, yfit...= curve_fit(power_func, xdata, ydata) yfit = power_func(xdata, *popt) # 绘图 plt.plot(xdata, ydata, '..., pcov = curve_fit(linear_func, xdata, ydata) yfit = linear_func(xdata, *popt) # 绘图 plt.plot(xdata,
= np.random.random([2, 10]) # split the data into two parts xdata1 = xdata[0, :] xdata2 = xdata[1,...:] # sort the data so it makes clean curves xdata1.sort() xdata2.sort() # create some y data points...ydata1 = xdata1 ** 2 ydata2 = 1 - xdata2 ** 3 # plot the data fig = plt.figure() ax = fig.add_subplot...(1, 1, 1) ax.plot(xdata1, ydata1, color='tab:blue') ax.plot(xdata2, ydata2, color='tab:orange') # create...the events marking the x data points xevents1 = EventCollection(xdata1, color='tab:blue', linelength
= 0; // PWM占空比 volatile u16 xdata CurrentPgaSample = 0; volatile u16 xdata CurrentSample = 0;...u8 xdata SpeedTimeCnt = 0; volatile u16 xdata SpeedTime = 0; volatile u16 xdata SpeedTimeTemp = 0; volatile...u32 xdata SpeedTimeSum = 0; volatile u16 xdata MotorSpeed = 0; volatile u16 xdata UserRequireSpeed =...volatile u16 xdata NeutralPoint = 0; volatile u16 xdata UBemf = 0; volatile u16 xdata VBemf = 0; volatile...u16 xdata WBemf = 0; volatile u8 xdata BlankingCnt = 0; volatile u8 xdata CheckZeroCrossState = 0; volatile
@EXAMPLE.COM # 验证principal是否被创建 getprinc liuyzh/node71.xdata@EXAMPLE.COM # 为liuyzh/node71.xdata@EXAMPLE.COM...liuyzh/node72.xdata@EXAMPLE.COM # 验证 kinit -kt liuyzh.service.keytab liuyzh/node72.xdata@EXAMPLE.COM...kdc = node71.xdata } keytab 文件为上边创建 liuyzh/node71.xdata@EXAMPLE.COM 对应的 liuyzh.service.keytab....xdata:2181,node73.xdata:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2;principal....xdata:2181,node72.xdata:2181,node73.xdata:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2
item in equityDataList: item['x']= time.strftime("%Y-%m-%d", time.localtime(item['x'] / 1000)) xData...12,5)) plt.title("华润元大信息传媒科技混合-单位净值走势折线图") # 收盘价的折线图 plt.xlabel("日期") # x=[] # for i in range(0,len(xData...),30): # x.append(xData[i]) plt.xticks([i for i in range(0, len(xData), 30)],[xData[i] for i in...range(0,len(xData),30)],rotation=45) plt.plot_date(xData,yData,'-',label="单位净值") print(yData[-1], yData
(size(data,1)); N = length(idx); % SVM train T = floor(N*0.9); % 90组数据作为训练数据 xdata...= data(idx(1:T),:); xgroup = group(idx(1:T)); svmStr = svmtrain(xdata,xgroup,'Showplot',true); 训练过程得到结构体...然后讨论C的影响,程序代码如下: % different C figure; C = 1; svmStr = svmtrain(xdata,xgroup,'kernel_function','rbf',...C,'showplot',true); title('C = 0.1'); figure; C = 8; svmStr = svmtrain(xdata,xgroup,'kernel_function'...C,'showplot',true); title('C = 1'); figure; C = 64; svmStr = svmtrain(xdata,xgroup,'kernel_function',
、yadata属性; xdata = get(hl,'XData'); ydata = get(hl,'YData'); 结果: 可以看出绘制曲线的原始数据保存在line对象中,而line对象是axes...获取fig文件原始数据的思路是:先找出figure对象的所有axes子对象,再找出每个坐标轴的所有line子对象,最后获取每条line的XData、YData、ZData属性,得到原始数据。...这个时候数据就在xdata和ydata,可以进行二次绘图。...'); yc1=get(figure_info(1,:),'ydata'); xc2=get(figure_info(2,:),'xdata'); yc2=get(figure_info(2,:...= get(hl,'XData'); ydata = get(hl,'YData'); zdata = get(hl,'ZData'); figure plot3(xdata,ydata,zdata)
> 0 xdata.raw xdata.raw %>% { (apply(., 2, sd) !...), 100)) xdata xdata.raw[, small.subset[small.subset %in% colnames(xdata.raw)]] ydata % unique xdata xdata.raw[, small.subset[small.subset %in% colnames(xdata.raw)]] ydata...xdata.raw xdata.raw %>% { (apply(., 2, sd) !...), 100)) %>% unique %>% sort xdata xdata.raw[, small.subset[small.subset %in% colnames(xdata.raw)
), 10)) xdata = data.times ydata = data.dealnums ax.plot(xdata, ydata) fig.autofmt_xdate() plt.show...第一个操作,我是这样做的,直接上代码: for x, y in zip(xdata_set, ydata_set): xdata.append(x) ydata.append(y) 也就是将原始数据集拆成单个数据...for x, y in zip(xdata_set, ydata_set): xdata.append(x) ydata.append(y) plt.clf() # ...清空整个figure # 重新建立坐标轴并画出折线图 ax = fig.add_subplot(1, 1, 1) ax.plot(xdata, ydata) ... return draw_line(fig, xdata, ydata) def update(n): # 更新数据集 xdata 和 ydata xdata = data.new_times
FuncAnimation np.random.seed(np.random.randint(1e9)) fig, ax = plt.subplots() #随机生成N个点的坐标 N = 30 xdata...= list(np.random.rand(N)*100) xdata.append(xdata[0]) # 封闭 ydata = list(np.random.rand(N)*100) ydata.append...返回的是元组 def update(frame): for i in range(len(xdata)-1): xdata[i] = 0.5*(xdata[i]+xdata...[i+1]) ydata[i] =0.5* (ydata[i]+ydata[i+1]) xdata[-1] = xdata[0]# 封闭 ydata[-...1] = ydata[0]# 封闭 ln.set_data(xdata, ydata) min_x, max_x = min(xdata), max(xdata) span_x
Java 示例 public class CovarianceCalculator { public static double calculateCovariance(double[] xData..., double[] yData) { if (xData == null || yData == null || xData.length !...= yData.length || xData.length == 0) { throw new IllegalArgumentException("Data arrays...must not be null, have the same length, and not be empty"); } int n = xData.length...double sumX = 0.0, sumY = 0.0; for (int i = 0; i < n; i++) { sumX += xData
bin/zkCli.sh -server node96.xdata [zk: node97.xdata:2181(CONNECTED) 0] create /infra-solr/configs/collection1...:2181,node97.xdata:2181,node98.xdata:2181 -cmd putfile /infra-solr/configs/collection1/managed-schema...:2181,node97.xdata:2181,node98.xdata:2181 -cmd putfile /infra-solr/configs/collection1/solrconfig.xml...:2181,node97.xdata:2181,node98.xdata:2181 -cmd putfile /infra-solr/configs/collection1/solr-data-config.xml...:2181,node97.xdata:2181,node98.xdata:2181 -cmd putfile /infra-solr/configs/collection1/elevate.xml elevate.xml
,'Children'); % 获取坐标轴的子对象:Line对象 ha = get(gcf,'Children'); % 获取当前的图形的子对象:Axes坐标轴对象 第三步:获取line对象的xdata...、yadata属性; xdata = get(hl,'XData'); ydata = get(hl,'YData'); 结果: 可以看出绘制曲线的原始数据保存在line对象中,而line对象是axes...获取fig文件原始数据的思路是:先找出figure对象的所有axes子对象,再找出每个坐标轴的所有line子对象,最后获取每条line的XData、YData、ZData属性,得到原始数据。...这个时候数据就在xdata和ydata,可以进行二次绘图。...'); yc1=get(figure_info(1,:),'ydata'); xc2=get(figure_info(2,:),'xdata'); yc2=get(figure_info(2,:
不过像这种需要分段处理数据的情况很多,有种在 matlab 里很常用的技巧感觉你可以学学: 假设原始数据(xdata)是一列 100 个数,你需要一次处理 13 个,那么下面这段代码先将这 100 数“...xdata = (1:100).’; nxdata = length(xdata); nrow = 13; % 假设你需要一次处理 13 个数据 ncol = ceil(nxdata/nrow); x...= zeros(nrow, ncol, ‘like’, xdata); size(x) x(1:nxdata) = xdata(:); y = zeros(nrow, ncol, ‘like’, xdata...还用我这个小例子,比如需要折叠成 10 行,也可以用 reshape(xdata, 10, [])。[] 是让 matlab 自己算整除后是多少列。...如: x2 = reshape(xdata, 10, []); size(x2) Matlab for循环语句 示例1: x = 0.5878 0.9511 0.9511 0.5878 0.0000 -