*/ xid = pgxact->xmin; /* fetch just once */ 如果xmin是有效的,记录最大的xmin到globalxmin中 if (TransactionIdIsNormal...(重要) 把全局最小的xmin更新到共享内存MyPgXact->xmin 和 TransactionXmin 和 globalxmin中。...TransactionIdIsValid(MyPgXact->xmin)) MyPgXact->xmin = TransactionXmin = xmin; LWLockRelease(ProcArrayLock...RecentXmin = xmin; snapshot->xmin = xmin; snapshot->xmax = xmax; snapshot->xcnt = count; snapshot...第三步:如果MyXact中的xmin无效,更新MyPgXact->xmin = TransactionXmin = xmin。
这个数据集专门经过写代码修复 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注 标注示例: 别人标注文件: 上面明显存在几个错误,labelImg标注xmin,ymin...0 0 xmin...>253xmin> 83 293 123...>498xmin> 0 538 40566xmin> 7 606 47<
txid_current_snapshot的文本表示为“xmin:xmax:xip_list”,组件描述如下: Xmin:最早仍在活动的txid。所有以前的事务要么提交并可见,要么回滚并停止。...该列表仅包含xmin和xmax之间的活动txid。...ABORTED状态 · t_xmin =ABORTED t_xmin =ABORTED,则判断此行不可见 /* t_xmin status = ABORTED */ Rule 1: IF t_xmin...,当前事务可见,其它事务不可见 /* t_xmin status = IN_PROGRESS */ IF t_xmin status is 'IN_PROGRESS' THEN IF t_xmin =.../* t_xmin status = COMMITTED */ IF t_xmin status is 'COMMITTED' THEN Rule 5: IF t_xmin is active in the
最后如果MyProc的xmin是无效的,更新一次PGPROC->xmin(还是要更新自己的xmin,这是必须的,无优化) 整个过程包在ProcArrayLock大锁中。...NormalTransactionIdPrecedes(xid, xmax)) continue; /* 如果xid xmin,xid也要包含在xmin中,xmin...TransactionIdIsValid(MyProc->xmin)) MyProc->xmin = TransactionXmin = xmin; LWLockRelease(ProcArrayLock...循环PGPROC时,看不到别的进程的xmin了,例如,一个RR事务A在拿快照的时候,最小事务ID:10还没提交,那么这个RR快照的xmin就是10。...优化前,A事务后面新事务B构造快照时,能通过A的PGPROC看到xmin=10,并更新自己的xmin=10。
对应代码: xmin_index = int(xmin / leap) xmax_index = int(xmax / leap) ymin_index = int(ymin / leap) ymax_index...= int(ymax / leap) xmin = xmin % leap xmax = xmax % leap ymin = ymin % leap ymax = ymax % leap # 第一种情况...,两个点在相同的图像块中 if xmin_index == xmax_index and ymin_index == ymax_index: info = xml2txt(xmin, xmax,...+ (xmax - xmin) / 2 ycenter = ymin + (ymax - ymin) / 2 w = xmax - xmin h = ymax - ymin...) ymax_index = int(ymax / leap) xmin = xmin % leap xmax = xmax %
minimum // 记录全局做小xmin if (pgxact->xmin && pgxact->xmin xmin) global_xmin =...ids // 全局最小xmin也要包含最小的事务ID if (pxact->xid xmin) global_xmin = pgxact->xid;...) xmin = pgxact->xid; } snapshot->xmin = xmin; // store snapshot xmin unless we already have...MyPgXact->xmin) MyPgXact->xmin = xmin; RecentGlobalXminHorizon = global_xmin; 这里最重要的一点: 循环体起始只需要计算活跃事务就好了...但是不访问xmin也没什么用,因为xmin和xid在一个cache line上,xmin虽然不访问,但是会修改。 改了就会让整个cache line失效,导致xid的访问也很慢。
由上图可以发现以下规律:如果相交时 xmin =max(xmin1, xmin2)#相交框xmin是两个框的左上角x坐标的最大值: ymin =max(ymin1, ymin2)#相交框ymin是两个框的左上角..., ymax1] :param box2: = [xmin2, ymin2, xmax2, ymax2] :return: """ xmin1, ymin1, xmax1..., ymax1 = box1 xmin2, ymin2, xmax2, ymax2 = box2 # 计算每个矩形的面积 s1 = (xmax1 - xmin1) * (ymax1...- ymin1) # b1的面积 s2 = (xmax2 - xmin2) * (ymax2 - ymin2) # b2的面积 # 计算相交矩形 xmin = max(...xmin1, xmin2) ymin = max(ymin1, ymin2) xmax = min(xmax1, xmax2) ymax = min(ymax1, ymax2)
由上图可以发现以下规律:如果相交时 xmin =max(xmin1, xmin2)#相交框xmin是两个框的左上角x坐标的最大值: ymin =max(ymin1, ymin2)#相交框ymin是两个框的左上角...xmax1, ymax1] :param box2: = [xmin2, ymin2, xmax2, ymax2] :return: """ xmin1, ymin1,...xmax1, ymax1 = box1 xmin2, ymin2, xmax2, ymax2 = box2 # 计算每个矩形的面积 s1 = (xmax1 - xmin1) *...(ymax1 - ymin1) # b1的面积 s2 = (xmax2 - xmin2) * (ymax2 - ymin2) # b2的面积 # 计算相交矩形 xmin...= max(xmin1, xmin2) ymin = max(ymin1, ymin2) xmax = min(xmax1, xmax2) ymax = min(ymax1, ymax2
= bndbox.getElementsByTagName("xmin")[0].childNodes[0].data ymin = bndbox.getElementsByTagName("...[0].data ymax = bndbox.getElementsByTagName("ymax")[0].childNodes[0].data print(name,bndbox,xmin...>head 12 xmin>169xmin> 104 209 146... hand xmin>278 asdxmin>...part> foot xmin>319xmin> 307 340
0x0100 /* t_xmin committed */ #define HEAP_XMIN_INVALID 0x0200 /* t_xmin invalid/aborted */ #define...HEAP_XMIN_FROZEN (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID) #define HEAP_XMAX_COMMITTED 0x0400 /* t_xmax...,可见 3)[snap->xmin,snap->xmax):查看CLOG。.../ Rule 1: IF t_xmin status is 'ABORTED' THEN RETURN 'Invisible' END IF /* t_xmin...= COMMITTED */ IF t_xmin status is 'COMMITTED' THEN Rule 5: IF t_xmin is active in the
本文中以转化到[0.1 0.9]为例 y与x之间的关系为 y=ax+b y=ax+b,具体一下就是 y=0.9−0.1xmax−xminx+0.1xmax−0.9xminxmax−xmin...y=\frac{0.9-0.1}{xmax-xmin}x+\frac{0.1xmax-0.9xmin}{xmax-xmin} x=xmax−xmin0.9−0.1y+0.9xmin−0.1xmax0.9...−0.1 x=\frac{xmax-xmin}{0.9-0.1}y+\frac{0.9xmin-0.1xmax}{0.9-0.1} 对于单个值和向量来说,只要按照上面的公式转化就行,很简单。...以matlab为例, function [ y, xmax, xmin ] = Normalize( x, xmax , xmin ) %NORMALIZE 利用max-min方法将数据归一化到[0.1,0.9...- nxmax * xmin) / diag(xmax - xmin); y = K * x + b * ones(size(x)); end function [ x ] = RNormalize(
相关信息,xmin代表插入的事务号 postgres=# select xmin,xmax,* from test; xmin | xmax | id ------+------+---- 510...| 0 | 3 (3 rows) 模拟删除id=2的记录 postgres=# delete from test where id=2; DELETE 1 postgres=# select xmin...,xmax,* from test; xmin | xmax | id ------+------+---- 510 | 0 | 1 512 | 0 | 3 (2 rows)...postgres=# select xmin,xmax,* from test; xmin | xmax | id ------+------+---- 510 | 0 | 1 (1 row...,xmax,* from test; xmin | xmax | id ------+------+---- 510 | 0 | 1 511 | 513 | 2 (2 rows)
2 构建柱子的坐标 # 构建柱子X轴的起点,从0开始 mydata$xmin<-0 for (i in 2:4){ mydata$xmin[i]<-sum(mydata$Width[1:i-1])...in 1:4){ mydata$xmax[i]<-sum(mydata$Width[1:i]) } 3 ggplot作图 # 作图 ggplot(mydata)+ geom_rect(aes(xmin...=xmin,xmax=xmax,ymin=0,ymax=Value,fill=Name), color="black",size=0.25,alpha=0.6)+ ylab(...# 作图 ggplot(mydata)+ geom_rect(aes(xmin=xmin,xmax=xmax,ymin=0,ymax=Value,fill=Name), color...$xmax[i]<-sum(mydata$Width[1:i]) } # 作图 ggplot(mydata)+ geom_rect(aes(xmin=xmin,xmax=xmax,ymin=0,ymax
>= x1 && xmin = y1 && ymin <= y2 || xmax >= x1 && xmax = y1...&& ymin <= y2 || xmin >= x1 && xmin = y1 && ymax <= y2 || xmax...const coords = [[[_xmin, _ymin], [_xmax, _ymin], [_xmax, _ymax], [_xmin, _ymax], [_xmin,...&& ymin <= y2 || xmin >= x1 && xmin = y1 && ymax <= y2 || xmax...const coords = [[[_xmin, _ymin], [_xmax, _ymin], [_xmax, _ymax], [_xmin, _ymax], [_xmin,
1825, 'xmax': 574, 'ymax': 2116}}, {'score': 0.45601949095726013, 'label': 'bottle', 'box': {'xmin...: 795, 'xmax': 1668, 'ymax': 1220}}, {'score': 0.4522128999233246, 'label': 'bottle', 'box': {'xmin...: 811, 'xmax': 770, 'ymax': 1201}}, {'score': 0.44276902079582214, 'label': 'bottle', 'box': {'xmin..., ymin, xmax, ymax = box.values() draw.rectangle((xmin, ymin, xmax, ymax), outline=”red”, width=1...对于每个检测到的物体,我们提取其边界框坐标(xmin,ymin,xmax,ymax),标签和置信度分数。在检测到的物体周围绘制矩形框,并将标签和分数添加为文本。
,xmax,ymin,ymax #(600, 400, 333, 425, 72, 158) plt.imshow(img) rec=Rectangle((xmin,ymin),(xmax-xmin)...,(ymax-ymin),fill=False,color="red") #最下角的值就是xmin,ymin ax=plt.gca() #获取当前图像 ax.axes.add_patch(rec)...xmin=(xmin/width)*224 xmax=(xmax/width)*224 ymin=(ymin/height)*224 ymax=(ymax/height)*224 plt.imshow...(img) rec=Rectangle((xmin,ymin),(xmax-xmin),(ymax-ymin),fill=False,color="red") #最下角的值就是xmin,ymin ax...,ymin),(xmax-xmin),(ymax-ymin),fill=False,color="red") #最下角的值就是xmin,ymin ax=plt.gca() #获取当前图像
=5,xmax=12,ymin=-Inf,ymax=Inf), fill="grey",alpha=0.1)+ geom_rect(aes(xmin=23,xmax=28,ymin...=-Inf,ymax=Inf), fill="grey",alpha=0.1)+ geom_rect(aes(xmin=35,xmax=52,ymin=-Inf,ymax=Inf...), fill="grey",alpha=0.1)+ geom_rect(aes(xmin=55,xmax=59,ymin=-Inf,ymax=Inf),...=5,xmax=12,ymin=-Inf,ymax=Inf), fill="grey",alpha=0.3)+ geom_rect(aes(xmin=23,xmax=28,ymin...=-Inf,ymax=Inf), fill="grey",alpha=0.3)+ geom_rect(aes(xmin=35,xmax=52,ymin=-Inf,ymax=Inf
image.png 首先是准备数据 表示整个基因的矩形数据 gene1<-data.frame( xmin=15000, xmax=16000, ymin=1, ymax=2 ) 外显子的数据...exon<- data.frame( xmin=c(15100,15300,15700), xmax=c(15200,15600,15900), ymin=1, ymax...ymax=ymax), fill="white",color="black")+ geom_rect(data=exon,aes(xmin=xmin,...= xmin, xmax = xmax, ymin = ymin, ymax = ymax ), fill = "white", color = "...black" ) + geom_rect( data = exon, aes( xmin = xmin, xmax = xmax, ymin = ymin
pointsGrob(pch=19, size=unit(0.8,'char')), xmin...length = unit(2,'mm'))), xmin...length = unit(2,'mm'))), xmin...just = "top", hjust=0.5), xmin...length = unit(2,'mm'))), xmin