上一篇博客 【Linux 内核 内存管理】分区伙伴分配器 ① ( 分区伙伴分配器源码数据结构 | free_area 空闲区域数组 | MAX_ORDER 宏定义 | 空闲区域的页最大阶数 ) 中 ,
" 内存区域 " 的类型 在 Linux 内核中使用 enum zone_type 枚举类型进行描述 , zone_type 枚举定义在 Linux 内核源码的 linux-4.12\include\linux\mmzone.h#293 位置 ;
在 【Linux 内核 内存管理】物理分配页 ② ( __alloc_pages_nodemask 函数参数分析 | __alloc_pages_nodemask 函数分配物理页流程 ) 博客中 , 分析了 __alloc_pages_nodemask 函数分配物理页流程如下 :
传统的多核运算是使用SMP(Symmetric Multi-Processor )模式:将多个处理器与一个集中的存储器和I/O总线相连。所有处理器只能访问同一个物理存储器,因此SMP系统有时也被称为一致存储器访问(UMA)结构体系,一致性意指无论在什么时候,处理器只能为内存的每个数据保持或共享唯一一个数值。
在 内存区域 的水位控制机制 中 , 在 内存区域 zone 结构体中的 watermark 成员 表示 " 页分配器 " 使用的 区域水线 ;
为了支持NUMA模型,也即CPU对不同内存单元的访问时间可能不同,此时系统的物理内存被划分为几个节点(node), 一个node对应一个内存簇bank,即每个内存簇被认为是一个节点
就需要从 " 备用内存区域 " 借用 物理页 进行 内存分配 , 该操作需要遵守如下算法规则 ;
" 首选内存区域 “ 在特定情况下 从 ” 备用内存区域 “ 借用物理内存 , 该 " 特定情况 " 与 ” 区域水线 " 有关 ;
上一节内容的学习我们知道了CPU是如何访问内存的,CPU拿到内存后就可以向其它人(kernel的其它模块、内核线程、用户空间进程、等等)提供服务,主要包括: 以虚拟地址(VA)的形式,为应用程序提供远大于物理内存的虚拟地址空间(Virtual Address Space) 每个进程都有独立的虚拟地址空间,不会相互影响,进而可提供非常好的内存保护(memory protection) 提供内存映射(Memory Mapping)机制,以便把物理内存、I/O空间、Kernel Image、文件等对象映射到相应进
上一节内容的学习我们知道了CPU是如何访问内存的,CPU拿到内存后就可以向其它人(kernel的其它模块、内核线程、用户空间进程、等等)提供服务,主要包括:
iptables备份数据到配置文件/etc/sysconfig/iptables,使用如下命令
account account 设置或显示当前用户的AccessKey和SecretKey [root@h101 qshell]# ./qshell_linux_amd64 account AccessKey: SecretKey: Zone: [root@h101 qshell]# [root@h101 qshell]# ./qshell_linux_amd64 account ELUs327kxVPJrGCXqWae9yioc0xYZyrIpbM6Wh6x LVzZY2SqOQ_I_kM1
上一篇博客 【Linux 内核 内存管理】分区伙伴分配器 ⑤ ( 区域水线 | 区域水线数据结构 zone_watermarks 枚举 | 内存区域 zone 中的区域水线 watermark 成员 ) 中讲解了 区域水线概念 , 本篇博客中开始分析 根据水线 进行 水位控制 的机制 ;
在内核初始化完成之后, 内存管理的责任就由伙伴系统来承担. 伙伴系统基于一种相对简单然而令人吃惊的强大算法.
" 内存区域 " 在 Linux 内核中使用 struct zone 结构体类型进行描述 , zone 枚举定义在 Linux 内核源码的 linux-4.12\include\linux\mmzone.h#350 位置 ;
我们接着看linux初始化内存的下半部分,等内存初始化后就可以进入真正的内存管理了,初始化我总结了一下,大体分为三步:
在实际业务开发中,会碰到夏令时,闰秒,时区转换的问题,这些问题都需要从业务角度去考虑,保证用户在任何地区看到的数据都一致的,这就需要MySQL数据库、后端服务以及前端服务做相应的处理才能完成。
Linux 内核中 , 内存节点 ( Node ) 是 " 内存管理 " 的 最顶层的结构 , 下层分别是 区域 和 页 ;
django默认的时区是UTC,平时是没有什么影响的,但是在需要将时间戳转换成本时区的时间或者是获取当前的本地的localtime的时候就出现了问题。之前程序在测试时是运行在Windows环境,所以即使settings.py中的TIME_ZONE使用默认时区,Django也会根据本机的时区使用当前时区时间。然而程序放到linux运行程序时,Django的时区会使用settings.py中的TIME_ZONE设置的时区,所以这时就出现了问题。再有当我用脚本在linux上测试或者直接进入python环境的时候,运行time.localtime(),显示本机所在时区的当前时间。
安装 BIND 软件包 1. 安装 2. 配置 下面的例子是以公网IP(172.16.0.80/29),局域网IP(192.168.0.0/24),域名(wscon.cn)作说明。在配置你自己的服务器时,请使用你自己的IP和域名。 # vim /etc/named.conf options { directory "/var/named"; # query range allow-query { localhost; 192.168.0.0/24; }; # transfer range allow-tra
现在你可能还觉得node、zone、伙伴系统、slab这些东东还有那么一点点陌生。别怕,接下来我们结合动手观察,把它们逐个来展开细说。(下面的讨论都基于Linux 3.10.0版本)
本文一是为了讨论在Linux系统出现问题时我们能够借助哪些工具去协助分析,二是讨论出现问题时大致的可能点以及思路,三是希望能给应用层开发团队介绍一些Linux内核机制从而选择更合适的使用策略。
环境:Linux服务器一台(双网卡) 内网IP:192.168.80.101 设置为vmnet1 外网IP:192.168.90.101 设置为vmnet2 Linux客户端一台,IP地址:192.168.80.102 设置为vmnet1 Win7客户端一台,IP地址:192.168.90.10 设置为vmnet2
分页单元可以实现把线性地址转换为物理地址, 为了效率起见, 线性地址被分为固定长度为单位的组, 称为”页”, 页内部的线性地址被映射到连续的物理地址. 这样内核可以指定一个页的物理地址和其存储权限, 而不用指定页所包含的全部线性地址的存储权限.
前言: 前文《内存映射技术分析》描述了虚拟内存的管理、内存映射;《物理内存管理》介绍了物理内存管理。 本篇介绍一下内存回收。内存回收应该是整个Linux的内存管理上最难理解的部分了。 分析: 1,PFRA Page Frame Reclaim Algorithm,Linux的内存回收算法。 不过,PFRA和常规的算法不同。比如说冒泡排序或者快速排序具有固定的时间复杂度和空间复杂度,代码怎么写都差不多。而PFRA则不然,它不是一个具体的算法,而是一个策略---什么样的情况下需要做内存回收,什么样的page
分区伙伴分配器概念 : Linux 内核 在 基本 伙伴分配器 基础上 , 增加了对 " 内存节点 “ 和 ” 内存区域 “ 的支持 , 这就是 ” 分区伙伴分配器 “ , 英文名称为 ” Zond Buddy Allocator " ;
在上一节, 我们介绍了Linux内核怎么管理系统中的物理内存. 但有时候内核需要分配一些物理内存地址也连续的内存页, 所以Linux使用了 伙伴系统分配算法 来管理系统中的物理内存页.
今天撸代码的时候Jrebel工具弹窗给我,原来的代理服务器过期了,要重新注册,刚好自己也有服务器,索性自己搭建一个代理服务器算了。
linux centos8 安装php7 nginx1.4 mysql8 ,运行php网站,各个模块从零开始配置
firewalld: 动态防火墙后台程序 firewall-config: 图形化的配置工具 firewall-cmd: 命令行客户端
Linux的内存管理可谓是学好Linux的必经之路,也是Linux的关键知识点,有人说打通了内存管理的知识,也就打通了Linux的任督二脉,这一点不夸张。有人问网上有很多Linux内存管理的内容,为什么还要看你这一篇,这正是我写此文的原因,网上碎片化的相关知识点大都是东拼西凑,先不说正确性与否,就连基本的逻辑都没有搞清楚,我可以负责任的说Linux内存管理只需要看此文一篇就可以让你入Linux内核的大门,省去你东找西找的时间,让你形成内存管理知识的闭环。 文章比较长,做好准备,深呼吸,让我们一起打开Lin
互联网、Linux内核书籍上充满了各种关于Linux DMA ZONE和dma_alloc_coherent、dma_map_single等的各种讲解,由于很多童鞋缺乏自身独立的思考,人云亦云,对这些概念形成了很多错误的理解。本文的目的在于彻底澄清这些误解。
Linux的swap相关部分代码从2.6早期版本到现在的4.6版本在细节之处已经有不少变化。本文讨论的swap基于Linux 4.4内核代码。Linux内存管理是一套非常复杂的系统,而swap只是其中一个很小的处理逻辑。希望本文能让读者了解Linux对swap的使用大概是什么样子。阅读完本文,应该可以帮你解决以下问题:
页是信息的物理单位, 分页是为了实现非连续分配, 以便解决内存碎片问题, 或者说分页是由于系统管理的需要. 段是信息的逻辑单位,它含有一组意义相对完整的信息, 分段的目的是为了更好地实现共享, 满足用户的需要.
Linux的内存管理可谓是学好Linux的必经之路,也是Linux的关键知识点,有人说打通了内存管理的知识,也就打通了Linux的任督二脉,这一点不夸张。有人问网上有很多Linux内存管理的内容,为什么还要看你这一篇,这正是我写此文的原因,网上碎片化的相关知识点大都是东拼西凑,先不说正确性与否,就连基本的逻辑都没有搞清楚,我可以负责任的说Linux内存管理只需要看此文一篇就可以让你入Linux内核的大门,省去你东找西找的时间,让你形成内存管理知识的闭环。
我们讲页框分配器的时候讲到了快速分配和慢速分配,其中伙伴算法是在快速分配里做的,忘记的小伙伴我们再看下:
在使用openstack的过程中,我们经常会添加好几台计算节点来部署虚拟机,在后续使用中由于某些原因,一些计算节点出现了问题,需要将这些出了问题的计算节点从openstack的控制节点中踢出去!但是很多时候,在删除计算节点的时候由于删除不彻底而导致了后面使用openstack出现了诸多问题。 下面记录了在openstack中彻底删除计算节点linux-node2.openstack的操作: 在控制节点上操作 查看计算节点 [root@linux-node1 src]# openstack host list
DNS 全称是 Domain Name System,大意是域名解析系统,它的职责是把域名翻译成一个一个可以识别的 IP 供不同的计算机设备连接。
在服务器运维中,监控系统温度是确保硬件稳定性和性能的重要环节。 过高的温度可能导致硬件故障,影响系统的正常运行。因此,掌握查看服务器温度的方法,对于每位运维工程师来说都是必备技能。本文将带领大家学习多种查看 Linux 系统温度的方法,让您的服务器时刻保持最佳状态。
本文讨论的 swap基于Linux4.4内核代码 。Linux内存管理是一套非常复杂的系统,而swap只是其中一个很小的处理逻辑。
Linux的防火墙体系主要工作在网络层,针对TCP/IP数据包实时过滤和限制,属于典型的包过滤防火墙(或称为网络层防火墙)。Linux系统的防火墙体系基于内核共存:firewalld、iptables、ebtables,默认使用firewalld来管理netfilter子系统。
本人最近会把proc目录详解给大家弄一下,欢迎翻译,有问题则留言。虽然是英文的,但都比较好理解,如有问题,请留言,我们共同为Linux社区而努力。我们翻译效果还不一定好,因为这玩意毕竟是老外搞的吗!!!咯咯,翻译可能引起误解。这玩意看懂需要tcp/ip方面的知识,学好proc对于linux性能优化是非常重要。这来自本人的整理。希望对大家有用。/proc/sys/vm主要是关于虚拟存储的相关信息。这个目录如下:
这点前面是说的很明白了, NUMA结构下, 每个处理器CPU与一个本地内存直接相连, 而不同处理器之前则通过总线进行进一步的连接, 因此相对于任何一个CPU访问本地内存的速度比访问远程内存的速度要快
显示success表示成功 –zone=public表示作用域为公共的 –add-port=443/tcp添加tcp协议的端口端口号为443 –permanent永久生效,如果没有此参数,则只能维持当前服务生命周期内,重新启动后失效;
一、安装Linux服务器 主机版本 主机名 主机内存 主机磁盘空间 主机网卡 DNS主机IP DNS服务名 redhat 7.9 DNSSERVER 1G 50G eth0 10.211.55.200 lucifer.com 二、配置YUM源,安装BIND ##1.通过cdrom挂载 mount /dev/cdrom /mnt ##2.通过安装镜像源挂载 mount -o loop /soft/rhel-server-7.9-x86_64-dvd.iso /mnt ##配置yum文件 cat </e
版权声明:欢迎交流,菲宇运维!
假设自定义的 ssh 端口号为 11011,使用下面的命令来添加新端口的防火墙规则:
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
领取专属 10元无门槛券
手把手带您无忧上云