芯片架构:AI算力不足的核心原因
架构就像是芯片的基因,它直接决定了芯片的提升空间。这也是后摩尔定律时代,“新物种”芯片崛起的根本原因。
大量的数据、有效的算法以及足够的算力结合,推动了人工智能的高速发展。但我们也不得不看清一个严峻的现实:数据量越来越大,数据类型越来越多;各种算法日新月异,高速发展;与此同时,算力的提升却显得赶不上趟,甚至落后于数据和算法的需求,特别是在计算场景对高带宽、低功耗需求持续走高的趋势下。此外,加之芯片工艺趋近极限,可大规模商用的新型材料暂时还没实现,在芯片架构上的探索成为提高芯片性能最重要的手段之一。
存算一体AI芯片:AI算力不足的破局点
在传统的冯·诺依曼架构中,由于计算与存储分离,计算过程中需要不断通过总线交换数据,将数据从内存读进CPU,计算完成后再写回存储。
随着深度学习的发展和应用,计算单元和存储单元之间的数据移动尤为频繁,数据搬运慢、搬运能耗大等问题成为了算力效能进一步提升的关键瓶颈。从处理单元外的存储器提取数据,搬运时间往往是运算时间的成百上千倍,公开数据显示,整个过程的无用能耗约在60%-90%之间。
特别是大算力场景下,存算分离带来的计算带宽问题成为主要瓶颈。以智能驾驶等边缘端高并发计算场景来看,它们除了对算力需求高之外,对芯片的功耗和散热也有很高的要求。而常规架构的芯片设计中,内存系统的性能提升速度已经大幅落后于处理器的性能提升速度,有限的内存带宽无法保证数据高速传输,无法满足高级别的计算需求。
国内现状:AI算力不足的解决方案
近年来,国内企业对于存算一体芯片的投入进入高峰期。
上市公司
领取专属 10元无门槛券
私享最新 技术干货