光刻机是芯片制造中最复杂、最昂贵的设备。可以说是人类科技之巅,那它的发展路径是怎么样的呢?
接触式光刻技术
接触式光刻技术良率低、成本高:接触式光刻技术出现于20世纪60年代,是小规模集成电路时期最主要的光刻技术。
接触式光刻技术中掩膜版与晶圆表面的光刻胶直接接触,一次曝光整个衬底,掩膜版图形与晶圆图形的尺寸关系是1:1,分辨率可达亚微米级。
特点
接触式可以减小光的衍射效应,但在接触过程中晶圆与掩膜版之间的摩擦容易形成划痕,产生颗粒沾污,降低了晶圆良率及掩膜版的使用寿命,需要经常更换掩膜版,故接近式光刻技术得以引入。
接近式光刻技术
接近式光刻技术分辨率有限:接近式光刻技术广泛应用于20世纪70年代,接近式光刻技术中的掩膜版与晶圆表明光刻胶并未直接接触,留有被氮气填充的间隙。
特点
最小分辨尺寸与间隙成正比,间隙越小,分辨率越高。缺点是掩膜版和晶圆之间的间距会导致光产生衍射效应,因此接近式光刻机的空间分辨率极限约为2u m。随着特征尺寸缩小,出现了投影光刻技术。
投影光刻技术
投影光刻技术有效提高分辨率:20世纪70年代中后期出现投影光刻技术,基于远场傅里叶光学成像原理,在掩膜版和光刻胶之间采用了具有缩小倍率的投影成像物镜,有效提高了分辨率。早期掩膜版与衬底图形尺寸比为1:1,随着集成电路尺寸的不断缩小,出现了缩小倍率的步进重复光刻技术。
步进重复光刻主要应用于0.25微米以上工艺:光刻时掩膜版固定不动,晶圆步进运动,完成全部曝光工作。随着集成电路的集成度不断提高,芯片面积变大,要求一次曝光的面积增大,促使更为先进的步进扫描光刻机问世。目前步进重复光刻主要应用于0.25微米以上工艺及先进封装领域。
步进扫描光刻被大量采用:步进扫描光刻机在曝光视场尺寸及曝光均匀性上更有优势,在0.25微米以下的制造中减少了步进重复光刻机的应用。
步进扫描采用动态扫描方式,掩膜版相对晶圆同步完成扫描运动,完成当前曝光后,至下一步扫描场位置,继续进行重复曝光,直到整个晶圆曝光完毕。从0.18微米节点开始,硅基底CMOS工艺大量采用步进扫描光刻,7nm以下工艺节点使用的EUV采用的也是步进扫描方式。
领取专属 10元无门槛券
私享最新 技术干货