首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

大数据的树形结构决定管理者需要对于数据源的包容性和开放性

你在某个域是数据权威,但在另一个域往往还没入门,因为数据带着天然的业务属性,所谓无业务不数据,但真的是这样吗?

对于数据管理人员,如果将数据当成资产,则理解资产是第一要务,现在人工智能,机器学习很热,但再好的算法,也不如一个好的数据。

举个例子,我们举办的一次建模大赛中发现有个地市找到了一个数据,即基于信令切换可以判断是否换成WIFI上网,这可以较为准确的判断是否是异网宽带用户,而这个数据其实早已经躺在我们的平台上了,仅仅因为这个数据不属于传统的领域,我们的数据管理人员还不熟悉,但大家都知道,靠算法去判断一个异网用户是多么艰难。

重剑无锋,大巧不工,大数据的精髓往往在于去做那些朴实无华的事情,就好比我们以前理解B域数据那样,要通过不停的问,不停的取,不停的修,最终我们对于数据的理解才能达到一个新的境界,直到足以挖掘出这个数据的全部潜力,这才是企业级数据管理团队存在的价值。

树形结构

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180214A0V3RF00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券