首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas 2.1发布了

2023年3月1日,Pandas 发布了2.0版本。6个月后(8月30日),更新了新的2.1版。让我们看看他有什么重要的更新。

更好的PyArrow支持

PyArrow是在Panda 2.0中新加入的后端,对于大数据来说提供了优于NumPy的性能。Pandas 2.1增强了对PyArrow的支持。官方在这次更新中使用最大的高亮字体宣布 PyArrow 将是 Pandas 3.0的基础依赖,这说明Panda 是认定了PyArrow了。

映射所有数组类型时可以忽略NaN类值

在以前版本,可空类型上调用map会在存在类似nan的值时触发错误。而现在可以设定na_action= " ignore "参数,将忽略所有类型数组中的nan值。

以下是发行说明中的一个例子:

In [5]: ser = pd.Series(["a", "b", np.nan], dtype="category")

In [6]: ser.map(str.upper, na_action="ignore")

Out[6]:

0     A

1     B

2   NaN

dtype: category

Categories (2, object): ['A', 'B']

##no errors !字符串的默认类型

默认情况下,所有字符串都存储在具有NumPy对象dtype的列中,如果你安装了PyArrow,则会将所有字符串推断为PyArrow支持的字符串,这个选项需要使用这个参数设置:

Copy-On-Write改进

写时复制在很久以前就出现了。在Pandas中有时你对数据做一些操作,修改的不是数据源的副本,而是数据源本身。例子:

写时复制是一种防止意外可变性的机制。当从其他数据推断数据时,可以保证只更改副本。这意味着代码将更加统一。Pandas将识别何时复制对象,并且只在必要时复制对象。在Pandas 2.1中,花了很多精力使许多地方的Copy-On-Write保持一致。

新的日期方法

在Pandas 2.1中,增加了一组新处理日期的新方法。

以下是一些最值得注意的方法:

这些方法对我们实际应用来说还是很好的

Python 3.9

pandas 2.1.0支持的最低版本是Python 3.9,也就是说我们如果有低版本的Python项目,要尽快升级了,或者说新项目的话最低也要3.9了

总结

在这次更新中提到了Pandas3.0,说明官方已经开始对它进行设计了,而且也强调了PyArrow的重要性,所以要用好Pandas,PyArrow的基础是需要掌握的。官网的地址:

https://pandas.pydata.org/docs/whatsnew/v2.1.0.html

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OQJ7_xg9ePK6bfhbskgB4T9A0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券