序
由于项目需要,需要对数据进行处理,故而又要滚回来看看paper,做点小功课,这篇文章只是简单的总结一下基础的Kmeans算法思想以及实现;
正文:
1.基础Kmeans算法.
Kmeans算法的属于基础的聚类算法,它的核心思想是: 从初始的数据点集合,不断纳入新的点,然后再从新计算集合的“中心”,再以改点为初始点重新纳入新的点到集合,在计算”中心”,依次往复,直到这些集合不再都不能再纳入新的数据为止.
图解:
假如我们在坐标轴中存在如下A,B,C,D,E一共五个点,然后我们初始化(或者更贴切的说指定)两个特征点(意思就是将五个点分成两个类),采用欧式距离计算距离.
注意的点:
1.中心计算方式不固定,常用的有使用距离(欧式距离,马式距离,曼哈顿距离,明考斯距离)的中点,还有重量的质心,还有属性值的均值等等,虽然计算方式不同,但是整体上Kmeans求解的思路相同.
2.初始化的特征点(选取的K个特征数据)会对整个收据聚类产生影响.所以为了得到需要的结果,需要预设指定的凸显的特征点,然后再用Kmeans进行聚类.
import java.util.ArrayList;
import java.util.List;
/**
* *********************************************************
* Author: XiJun.Gong
* Date: 2017-01-17 15:57
* Version: default 1.0.0
* Class description:
* *********************************************************
*/
public class Kmeans {
private final double exp = 1e-6;
private List topk;
public List getTopk() {
return topk;
}
public void setTopk(List topk) {
this.topk = topk;
}
class KMeanData {
private float x; //x坐标
private float y; //y坐标
private int flag; //隶属于哪一个簇
public int getFlag() {
return flag;
}
public void setFlag(int flag) {
this.flag = flag;
}
public float getX() {
return x;
}
public void setX(float x) {
this.x = x;
}
public float getY() {
return y;
}
public void setY(float y) {
this.y = y;
}
}
public boolean max(float a, float b) {
return a > b + exp ? true : false;
}
public float distance(KMeanData a, KMeanData b) {
return (float) Math.sqrt(Math.pow(a.getX() - b.getX(), 2)
+ Math.pow(a.getY() - b.getY(), 2));
}
public boolean Kequal(KMeanData a, KMeanData b) {
if (Math.abs(a.getY() - b.getY())
return true;
return false;
}
public KMeanData[] produce(int size, int range) {
KMeanData[] kmData = new KMeanData[size];
for (int i = 0; i
kmData[i] = new KMeanData();
kmData[i].setX((float) (Math.random() * range));
kmData[i].setY(((float) Math.random() * range));
kmData[i].setFlag(0);
}
return kmData;
}
public void kprint(KMeanData[] data, final int k) {
for (int i = 1; i
for (int j = 0; j
if (data[j].getFlag() == i) {
}
}
}
}
public KMeanData[] kmeans(KMeanData[] data, final int k) {
if (null == data || data.length
return null;
}
if (k > data.length) {
return null;
}
/*随机选取k个点*/
topk = new ArrayList();
int stride = data.length / k;
//均值步长取k的初始簇
for (int i = 0; i
data[i].setFlag((i / stride) + 1);
topk.add(data[i]);
}
//聚合
while (true) {
for (int i = 0; i
float min = (float) 1e9, dist;
int pos = 0;
for (KMeanData kter : topk) {
if (!Kequal(kter, data[i]) && min > (dist = distance(data[i], kter))) {
min = dist;
pos = i;
}
}
data[pos].setFlag((i / stride) + 1);
}
//重新计算质心
KMeanData[] ntopk = new KMeanData[k + 1];
int[] kcnt = new int[k + 1];
for (int i = 0; i
kcnt[data[i].getFlag()]++;
ntopk[data[i].getFlag()] = new KMeanData();
ntopk[data[i].getFlag()].setX(ntopk[data[i].getFlag()].getX() + data[i].getX());
ntopk[data[i].getFlag()].setY(ntopk[data[i].getFlag()].getY() + data[i].getY());
}
for (int i = 1; i
ntopk[i].setX(ntopk[i].getX() / kcnt[i]);
}
//判断一下是否是已经收敛了
boolean flag = false;
for (int i = 0; i
if (!Kequal(topk.get(i), ntopk[i + 1])) {
flag = true;
topk.set(i, ntopk[i + 1]);
}
}
if (!flag) break;
}
return data;
}
}
---main---
/**
* *********************************************************
* Author: XiJun.Gong
* Date: 2017-01-17 17:57
* Version: default 1.0.0
* Class description:
* *********************************************************
*/
public class Main {
public static void main(String args[]) {
Kmeans kmeans = new Kmeans();
kmeans.kprint(kmeans.kmeans(kmeans.produce(100, 60), 10), 10);
}
}
第1簇集合: ( 2.8443472 , 14.963217 )
( 19.135574 , 48.378784 )( 31.432192 , 17.925615 )( 4.5895605 , 11.125353 )( 2.1719377 , 22.074598 )( 14.182562 , 34.964306 )( 21.141474 , 39.34452 )( 39.017117 , 56.293888 )( 26.028856 , 36.239174 )( 27.319502 , 55.982365 )( 28.443472 , 14.963217 )
第2簇集合: ( 0.8835429 , 18.1895 )
( 22.023354 , 41.003338 )( 23.229214 , 54.271046 )( 14.30185 , 48.939583 )( 2.4819863 , 27.38683 )( 11.668434 , 57.642452 )( 49.092728 , 55.405685 )( 23.38715 , 25.048647 )( 19.695707 , 45.738415 )( 26.929798 , 58.74604 )( 8.835429 , 18.1895 )
( 57.08818 , 41.345074 )( 14.97413 , 36.16043 )( 54.09579 , 36.052063 )( 24.645374 , 57.247772 )( 58.734444 , 27.05567 )( 13.617909 , 16.157734 )( 30.897354 , 31.427551 )( 33.367496 , 33.386326 )( 33.451378 , 53.20307 )( 7.4630327 , 45.51654 )
第4簇集合: ( 1.968404 , 33.967808 )
( 5.487106 , 36.14787 )( 45.656933 , 17.261345 )( 28.166676 , 29.430775 )( 13.528182 , 41.53365 )( 22.37523 , 30.01359 )( 52.460278 , 1.8516384 )( 10.2530575 , 47.032955 )( 28.544668 , 41.290382 )( 22.431509 , 6.789385 )( 19.68404 , 33.967808 )
第5簇集合: ( 1.6082747 , 29.020123 )
( 59.416927 , 22.173529 )( 27.72831 , 48.705555 )( 59.062904 , 27.449326 )( 6.909786 , 30.03262 )( 42.442226 , 8.278798 )( 51.15263 , 59.101868 )( 7.6760554 , 57.712944 )( 41.01523 , 56.367043 )( 55.39889 , 41.588028 )( 16.082747 , 29.020123 )
第6簇集合: ( 3.2178578 , 4.2711926 )
第7簇集合: ( 4.042007 , 31.607666 )
第8簇集合: ( 1.5596402 , 29.19249 )
( 43.503544 , 21.245668 )( 59.312412 , 35.47328 )( 12.452401 , 14.911624 )( 57.877514 , 46.545307 )( 9.161788 , 53.974636 )( 28.102057 , 40.347496 )( 56.39533 , 15.801934 )( 48.884666 , 50.610317 )( 32.18778 , 8.80818 )( 15.596402 , 29.19249 )
第9簇集合: ( 2.5482278 , 36.367596 )
( 52.08338 , 38.900063 )( 46.13634 , 45.479736 )( 37.948357 , 56.04102 )( 27.17064 , 54.725323 )( 56.840836 , 23.867615 )( 53.052013 , 19.699564 )( 48.167595 , 33.628963 )( 5.600155 , 26.792658 )( 8.978055 , 53.935356 )( 25.482279 , 36.367596 )
第10簇集合: ( 1.3590596 , 35.720345 )
( 35.742085 , 9.892197 )( 35.366455 , 47.68727 )( 6.3293104 , 39.160095 )( 11.329118 , 21.142208 )( 48.153606 , 18.321869 )( 42.181618 , 44.782696 )( 57.56768 , 30.652052 )( 26.439352 , 38.31146 )( 31.588612 , 55.974304 )( 13.590596 , 35.720345 )
领取专属 10元无门槛券
私享最新 技术干货