最近在看博客的时候想不起来bp算法和梯度下降的区别。这两个好像是一个东西?但是又ng课程上的梯度下降那两个公式(如下图)和bp算法也没关啊。于是百度,得知bp算法是用来求导数的方法,就是链式法则的应用。
链式法则
先举一个例子: 我们以求e=(a+b)*(b+1)的偏导[3]为例。它的复合关系画出图可以表示如下:
在图中,引入了中间变量c,d。在图中,引入了中间变量c,d。为了求出a=2, b=1时,e的梯度,我们可以先利用偏导数的定义求出不同层之间相邻节点的偏导关系,如下图所示。
利用链式法则我们知道:
以及
链式法则在上图中的意义是什么呢?其实不难发现,的值等于从a到e的路径上的偏导值的乘积,而的值等于从b到e的路径1(b-c-e)上的偏导值的乘积加上路径2(b-d-e)上的偏导值的乘积。也就是说,对于上层节点p和下层节点q,要求得,需要找到从q节点到p节点的所有路径,并且对每条路径,求得该路径上的所有偏导数之乘积,然后将所有路径的 “乘积” 累加起来才能得到的值。
大家也许已经注意到,这样做是十分冗余的,因为很多路径被重复访问了。比如上图中,a-c-e和b-c-e就都走了路径c-e。对于权值动则数万的深度模型中的神经网络,这样的冗余所导致的计算量是相当大的。
同样是利用链式法则,BP算法则机智地避开了这种冗余,它对于每一个路径只访问一次就能求顶点对所有下层节点的偏导值。
正如反向传播(BP)算法的名字说的那样,BP算法是反向(自上往下)来寻找路径的。从最上层的节点e开始,初始值为1,以层为单位进行处理。对于e的下一层的所有子节点,将1乘以e到某个节点路径上的偏导值,并将结果“堆放”在该子节点中。等e所在的层按照这样传播完毕后,第二层的每一个节点都“堆放”些值,然后我们针对每个节点,把它里面所有“堆放”的值求和,就得到了顶点e对该节点的偏导。然后将这些第二层的节点各自作为起始顶点,初始值设为顶点e对它们的偏导值,以”层”为单位重复上述传播过程,即可求出顶点e对每一层节点的偏导数。
以上图为例,节点c接受e发送的12并堆放起来,节点d接受e发送的13并堆放起来,至此第二层完毕,求出各节点总堆放量并继续向下一层发送。节点c向a发送21并对堆放起来,节点c向b发送21并堆放起来,节点d向b发送31并堆放起来,至此第三层完毕,节点a堆放起来的量为2,节点b堆放起来的量为21+3*1=5, 即顶点e对b的偏导数为5.
参考博客 神经网络-BP,更新参数策略
一个神经网络例子
如上图,截选自谷歌机器学习教程。 只需3个公式,你就可以搞懂反向传播算法....so easy
《一文弄懂神经网络中的反向传播法——BackPropagation》http://www.cnblogs.com/charlotte77/p/5629865.html这篇博客写的不错..
欢迎关注:)
领取专属 10元无门槛券
私享最新 技术干货