首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

提高Python效率的几个小技巧,一个最常见的速度陷坑

1 shortStrs = [ str0, str1, ..., strN]

2 #N+1个字串所组成的数列

3 longStr = ”

4 for s in shortStrs: longStr += s

因为Python 里字串是不可变的, 所以每次 longStr += s 都是将原 来的 longStr 与 str 拷贝成一个新字串, 再赋给longStr. 随着 longStr的不断增长, 所要拷贝的内容越来越长. 最后导至str0被 拷贝N+1次, str1是N次, … .

1.1.1. 找出速度瓶颈

1)首先在大家应先学会怎么去找出速度瓶颈: Python 自带有profile,

模块:

Toggle line numbers

1 import profile

2 profile.run (’想要检查的函数名()’)

就会打印出那个函数里调用了几次其它函数, 各用了多少时间,裙有大量资源可以下载裙好码壹壹二七一九壹零 。总共用了多少时间等信息 — Nice ? 详请参阅>中的 profile模块的论述.

当然脑袋笨一点或是聪明一点的, 也可以用time模块中的time() 来显示系统时间, 减去上次的time()就是与它的间隔秒数了.

1.1.2. 字串相并

就头上的例子而言, 用 :

Toggle line numbers

1 longStr =”.join(shortStrs)

立马搞定, 但如果shortStrs里面不都是字串, 而包含了些数 字呢 ? 直接用join就会出错. 不怕, 这样来:

Toggle line numbers

1 shortStrs = [str(s) for s in shortStrs[i]]

2 longStr = ”.join(shortStrs)

也即先将数列中所有内容都转化为字串, 再用join.

对少数几个字串相并, 应避免用: all = str0 + str1 + str2 + str3 而用: all = ‘%s%s%s%s’ % (str0, str1, str2, str3)

1.1.3. 数列排序

list.sort ()

你可以按特定的函数来: list.sort( 函数 ), 只要这个函数接受 两参数, 并按特定规则返回1, 0, -1就可以. — 很方便吧? 但 会大大减慢运行速度. 下面的方法, 俺举例子来说明可能更容易 明白.

比方说你的数列是 l = ['az', 'by'], 你想以第二个字母来排序. 先取出你的关键词, 并与每个字串组成一个元组: new = map (lambda s: (s[1], s), l )

于是new变成[('z', 'az'), ('y', 'by')], 再把new排一下序: new.sort()

则new就变成 [('y', 'by'), ('z', 'az')], 再返回每个元组中 的第二个字串: sorted = map (lambda t: t[1], new)

于是sorted 就是: ['by', 'az']了. 这里的lambda与map用得很 好.

Python2.4以后, sort和sorted的使用可以参考这片 Wiki: HowToSort

1.1.4. 循环

比如for循环. 当循环体很简单时, 则循环的调用前头(overhead) 会显得很臃肿, 此时map又可以帮忙了. 比如你想把一个长数列 l=['a', 'b', ...]中的每个字串变成大写, 可能会用:

Toggle line numbers

1 import string

2 newL = []

3 for s in l: newL.append( string.upper(s) )

用map就可以省去for循环的前头:

Toggle line numbers

1 import string

2 newL = map (string.upper, l)

Guido的文章讲得很详细.

1.1.5. 局域变量 及 ‘.’

象上面, 若用 append = newL.append, 及换种import方法:

Toggle line numbers

1 import string

2 append = newL.append

3 for s in l: append (string.upper(s))

会比在for中运行newL.append快一些, 为啥? 局域变量容易寻找.

俺自己就不比较时间了, Skip Montanaro的结果是:

基本循环: 3.47秒

去点用局域变量: 1.79秒

使用map: 0.54秒

1.1.6. try的使用

比如你想计算一个字串数列: l = ['I', 'You', 'Python ', 'Perl', ...] 中每个词出现的次数, 你可能会:

Toggle line numbers

1 count = {}

2 for s in l:

3 if not count.has_key(s): count[s] = 0

4 else: count[s] += 1

由于每次都得在count中寻找是否已有同名关键词, 会很费时间. 而用try:

Toggle line numbers

1 count ={}

2 for s in l:

3 try: count[s] += 1

4 except KeyError: count[s] = 0

就好得多. 当然若经常出现例外时, 就不要用try了.

1.1.7. import语句

这好理解. 就是避免在函数定义中来import一个模块, 应全在 全局块中来import

1.1.8. 大量数据处理

由于Python 中的函数调用前头(overhead)比较重, 所以处理大量 数据时, 应:

Toggle line numbers

1 def f():

2 for d in hugeData: …

3 f()

而不要:

Toggle line numbers

1 def f(d): …

2 for d in hugeData: f(d)

这点好象对其它语言也适用, 差不多是放之四海而皆准, 不过对 解释性语言就更重要了.

1.1.9. 减少周期性检查

这是Python 的本征功能: 周期性检查有没有其它绪(thread)或系 统信号(signal)等要处理.

可以用sys模块中的setcheckinterval 来设置每次检查的时间间隔.

缺省是10, 即每10个虚拟指令 (virtual instruction)检查一次.

当你不用绪并且也懒得搭理 系统信号时, 将检查周期设长会增加速度, 有时还会很显著.

—编/译完毕. 看来Python 是易学难精了, 象围棋?

2. 我们自个儿的体悟

请有心得者分享!

在“大量数据处理”小节里,是不是说,不要再循环体内部调用函数,应该把函数放到外面?从Python2.2开始,”找出速度瓶颈”,已经可以使用hotshot模块了.据说对程序运行效率的影响要比profile小. — jacobfan

“由于Python 中的函数调用前头(overhead)比较重, 所以处理大量 数据时, 应: ” 这句译文中,overhead翻译成”前头”好象不妥.翻译成”由于Python 中函数调用的开销比较大,…”要好些 — jacobfan

数组排序中讲的方法真的会快点吗? 真的快到我们值得放弃直接用sort得到得可读性吗?值得怀疑 — hoxide

Python2.4以后 sort和sorted的使用更加灵活,link已经加到文中,我没有比较过效率。-yichun

关于 “try的使用”:

其实setdefault方法就是为这个目的设的:

Toggle line numbers

1 count = {}

2 for s in l:

3 count.setdefault(s, 0) += 1

这个其实能做更多。通常遇到的问题是要把类似的东西group起来,所以你可能想用:

Toggle line numbers

1 count = {}

2 for s in l:

3 count.setdefault(s, []).append(s)

但是这样你只能把同样的东西hash起来,而不是一类东西。比如说你有一个dict构成的list叫sequence,需要按这些dict的某个key value分类,你还要对分类后的每个类别里面的这些dict各作一定的操作,你就需要用到Raymond实现的这个groupby,你就可以写:

totals = dict((key, group)

for key, group in groupby(sequence, lambda x: x.get(’Age’)))

好了。现在更新完一 内容 。可以点击头像关注我。

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180318A0WWIM00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券