首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python 绘图库 Matplotlib 入门教程

来源:强波的技术博客

qiangbo.space/2018-04-06/matplotlib_l1/

Matplotlib是一个Python语言的2D绘图库,它支持各种平台,并且功能强大,能够轻易绘制出各种专业的图像。本文是对它的一个入门教程。

运行环境

由于这是一个Python语言的软件包,因此需要你的机器上首先安装好Python语言的环境。关于这一点,请自行在网络上搜索获取方法。

关于如何安装Matplotlib请参见这里:Matplotlib Installing。

笔者推荐大家通过pip的方式进行安装,具体方法如下:

sudo pip3 installmatplotlib

本文的代码在如下环境中测试:

Apple OS X 10.13

Python 3.6.3

matplotlib 2.1.1

numpy 1.13.3

介绍

Matplotlib适用于各种环境,包括:

Python脚本

IPython shell

Jupyternotebook

Web应用服务器

用户图形界面工具包

使用Matplotlib,能够的轻易生成各种类型的图像,例如:直方图,波谱图,条形图,散点图等。并且,可以非常轻松的实现定制。

入门代码示例

下面我们先看一个最简单的代码示例,让我们感受一下Matplotlib是什么样的:

# test.py

importmatplotlib.pyplotasplt

import numpyasnp

data=np.arange(100,201)

plt.plot(data)

plt.show()

这段代码的主体逻辑只有三行,但是它却绘制出了一个非常直观的线性图,如下所示:

对照着这个线形图,我们来讲解一下三行代码的逻辑:

通过np.arange(100, 201)生成一个[100, 200]之间的整数数组,它的值是:[100, 101, 102, … , 200]

通过matplotlib.pyplot将其绘制出来。很显然,绘制出来的值对应了图中的纵坐标(y轴)。而matplotlib本身为我们设置了图形的横坐标(x轴):[0, 100],因为我们刚好有100个数值

通过plt.show()将这个图形显示出来

这段代码非常的简单,运行起来也是一样。如果你已经有了本文的运行环境,将上面的代码保存到一个文本文件中(或者通过Github获取本文的源码),然后通过下面的命令就可以在你自己的电脑上看到上面的图形了:

python3test.py

注1:后面的教程中,我们会逐步讲解如何定制图中的每一个细节。例如:坐标轴,图形,着色,线条样式,等等。

注2:如果没有必要,下文的截图会去掉图形外侧的边框,只保留图形主体。

一次绘制多个图形

有些时候,我们可能希望一次绘制多个图形,例如:两组数据的对比,或者一组数据的不同展示方式等。

可以通过下面的方法创建多个图形:

多个figure

可以简单的理解为一个figure就是一个图形窗口。matplotlib.pyplot会有一个默认的figure,我们也可以通过plt.figure()创建更多个。如下面的代码所示:

# figure.py

importmatplotlib.pyplotasplt

import numpyasnp

data=np.arange(100,201)

plt.plot(data)

data2=np.arange(200,301)

plt.figure()

plt.plot(data2)

plt.show()

这段代码绘制了两个窗口的图形,它们各自是一个不同区间的线形图,如下所示:

注:初始状态这两个窗口是完全重合的。

多个subplot

有些情况下,我们是希望在同一个窗口显示多个图形。此时就这可以用多个subplot。下面是一段代码示例:

# subplot.py

importmatplotlib.pyplotasplt

import numpyasnp

data=np.arange(100,201)

plt.subplot(2,1,1)

plt.plot(data)

data2=np.arange(200,301)

plt.subplot(2,1,2)

plt.plot(data2)

plt.show()

这段代码中,除了subplot函数之外都是我们熟悉的内容。subplot函数的前两个参数指定了subplot数量,即:它们是以矩阵的形式来分割当前图形,两个整数分别指定了矩阵的行数和列数。而第三个参数是指矩阵中的索引。

因此,下面这行代码指的是:2行1列subplot中的第1个subplot。

plt.subplot(2,1,1)

下面这行代码指的是:2行1列subplot中的第2个subplot。

plt.subplot(2,1,2)

所以这段代码的结果是这个样子:

subplot函数的参数不仅仅支持上面这种形式,还可以将三个整数(10之内的)合并一个整数。例如:2, 1, 1可以写成211,2, 1, 2可以写成212。

因此,下面这段代码的结果是一样的:

importmatplotlib.pyplotasplt

import numpyasnp

data=np.arange(100,201)

plt.subplot(211)

plt.plot(data)

data2=np.arange(200,301)

plt.subplot(212)

plt.plot(data2)

plt.show()

常用图形示例

Matplotlib可以生成非常多的图形式样,多到令人惊叹的地步。大家可以在这里:Matplotlib Gallery感受一下。

本文作为第一次的入门教程,我们先来看看最常用的一些图形的绘制。

线性图

前面的例子中,线性图的横轴的点都是自动生成的,而我们很可能希望主动设置它。另外,线条我们可能也希望对其进行定制。看一下下面这个例子:

# plot.py

importmatplotlib.pyplotasplt

plt.plot([1,2,3],[3,6,9],'-r')

plt.plot([1,2,3],[2,4,9],':g')

plt.show()

这段代码可以让我们得到这样的图形:

这段代码说明如下:

散点图

scatter函数用来绘制散点图。同样,这个函数也需要两组配对的数据指定x和y轴的坐标。下面是一段代码示例:

# scatter.py

importmatplotlib.pyplotasplt

import numpyasnp

N=20

c='r',s=100,alpha=0.5)

c='g',s=200,alpha=0.5)

c='b',s=300,alpha=0.5)

plt.show()

这段代码说明如下:

这幅图包含了三组数据,每组数据都包含了20个随机坐标的位置

参数c表示点的颜色,s是点的大小,alpha是透明度

这段代码绘制的图形如下所示:

饼状图

pie函数用来绘制饼状图。饼状图通常用来表达集合中各个部分的百分比。

# pie.py

importmatplotlib.pyplotasplt

import numpyasnp

labels=['Mon','Tue','Wed','Thu','Fri','Sat','Sun']

plt.pie(data,labels=labels,autopct='%1.1f%%')

plt.axis('equal')

plt.legend()

plt.show()

这段代码说明如下:

data是一组包含7个数据的随机数值

图中的标签通过labels来指定

autopct指定了数值的精度格式

plt.axis('equal')设置了坐标轴大小一致

plt.legend()指明要绘制图例(见下图的右上角)

这段代码输出的图形如下所示:

条形图

bar函数用来绘制条形图。条形图常常用来描述一组数据的对比情况,例如:一周七天,每天的城市车流量。

下面是一个代码示例:

# bar.py

importmatplotlib.pyplotasplt

import numpyasnp

N=7

x=np.arange(N)

labels=['Mon','Tue','Wed','Thu','Fri','Sat','Sun']

plt.title("Weekday Data")

plt.bar(x,data,alpha=0.8,color=colors,tick_label=labels)

plt.show()

这段代码说明如下:

这段代码输出的图形如下所示:

直方图

hist函数用来绘制直方图。直方图看起来是条形图有些类似。但它们的含义是不一样的,直方图描述了数据中某个范围内数据出现的频度。这么说有些抽象,我们通过一个代码示例来描述就好理解了:

# hist.py

importmatplotlib.pyplotasplt

import numpyasnp

labels=['3K','4K','5K']

bins=[,100,500,1000,2000,3000,4000,5000]

plt.hist(data,bins=bins,label=labels)

plt.legend()

plt.show()

第一个数组包含了3000个随机数,这些随机数的范围是 [0, 3000)

第二个数组包含了4000个随机数,这些随机数的范围是 [0, 4000)

第三个数组包含了5000个随机数,这些随机数的范围是 [0, 5000)

bins数组用来指定我们显示的直方图的边界,即:[0, 100) 会有一个数据点,[100, 500)会有一个数据点,以此类推。所以最终结果一共会显示7个数据点。同样的,我们指定了标签和图例。

这段代码的输出如下图所示:

在这幅图中,我们看到,三组数据在3000以下都有数据,并且频度是差不多的。但蓝色条只有3000以下的数据,橙色条只有4000以下的数据。这与我们的随机数组数据刚好吻合。

结束语

通过本文,我们已经知道了Matplotlib的大致使用方法和几种最基本的图形的绘制方式。

需要说明的是,由于是入门教程,因此本文中我们只给出了这些函数和图形最基本的使用方法。但实际上,它们的功能远不止这么简单。因此本文中我们贴出了这些函数的API地址以便读者进一步的研究。

看完本文有收获?请转发分享给更多人

关注「数据分析与开发」,提升数据技能

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180416B1LS6R00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券