首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用人工智能发现新型材料,金属玻璃可替代钢材

本文由人工智能观察编译

译者:Sandy

科学家们联合起来,利用人工智能在极短的时间之内发现了新的钢材替代品,再创纪录。在这一试验中,他们共发现了三种用于合成金属玻璃的混合物,比以往要快200倍。

金属玻璃实质上是一种未来的合金。通常情况下,将少量的金属混合在一起就意味着可以将每种金属的理想特性“添加”在一起,以便形成一种“超级金属”。表面看起来合金与金属无异,其原子结构会呈刚性几何图形。

虽然金属玻璃不具备刚性的几何图形,但却具有类似于玻璃那样的无序原子结构。因此,金属玻璃比现在的钢材更坚固轻便,也更耐腐蚀和磨损,被认为是钢材的理想替代品。

说到这一点,金属玻璃相对较新,但也并不是所有的金属玻璃成分组合都通过了测试。过去的50年里,人们在数百万种可能的成分组合中,已经评估过几千种,但只有少数几种可能是有用的。获取一种预测或建模最佳组合的方法便是在金属玻璃世界中寻找。

因此,美国能源部SLAC国家加速器实验室、国家标准与技术研究院(NIST)和西北大学的科学家领导的一个科学小组进行了试验,并报告表示他们找到了发现和改进金属玻璃的捷径,通过人工智能技术,可以用较少时间和成本发现新型材料。

该团队使用了SLAC的斯坦福同步加速器辐射光源(SSRL),通过机器学习系统发现了三种新的原料混合物来形成金属玻璃。Science子刊《ScienceAdvances》对这些发现进行了报告。

西北大学教授克里斯·沃尔夫顿(Chris Wolverton)教授是使用计算机和人工智能预测新材料的先驱,也是论文合作者之一。他说,通常需要十年或二十年的时间,新材料才能完成从发现到商用的过程,“这一成果极大缩短了新材料发现所花费的时间。”

这项工作不仅可以用于金属玻璃,还可以用于其他材料,也就是说这对工业来说是一项非常有价值的技术。在沃尔夫顿教授看来,其最终目标是让科学家能够获得机器学习模型中的直接反馈结果,并在第二天甚至下一个小时内,就准备好另一套待测试的样本。

在过去的半个世纪里,科学家一共研究了大约6000种金属玻璃的组成成分,而这套新系统能够制作并筛选20000种成分。虽然有其他团队也在使用机器学习预测寻找不同种类的金属玻璃,但此次科学家通过实验的快速验证和预测,然后将结果循环到下一轮机器学习和实验中,是此次进步的独特之处。

实际上,这种方法可以用于各种实验,特别是在寻找材料,如在金属玻璃和催化剂方面有很大的优势。NIST材料研究工程师曾表示,人工智能将改变材料科学的前景。

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180423A1LR2A00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券