首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

27个机器学习小抄

来源:机器学习算法与自然语言处理

本文多资源,建议收藏

本文针对机器学习基本概念及编程和数学基础,为你列出相应的学习资源。

机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。

机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在目前,它们还是很潮的。

机器学习

这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。

1. 神经网络架构

http://www.asimovinstitute.org/neural-network-zoo/

2. 神经网络公园

微软 Azure 算法流程图

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

用于微软 Azure 机器学习工作室的机器学习算法

3. SAS 算法流程图

SAS:我应该使用哪个机器学习算法?

http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

4. 算法总结

http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

5. 机器学习算法指引

已知的机器学习算法哪个最好?

http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/

6. 算法优劣

https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend

Python

自然而然,也有许多在线资源是针对 Python 的,这一节中,我仅包括了我所见过的最好的那些小抄。

1. 算法

https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/

2. Python 基础

资源 1:http://datasciencefree.com/python.pdf

资源 2:https://www.datacamp.com /community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA

3. Numpy

资源1:https://www.dataquest.io/blog/numpy-cheat-sheet/

资源 2:http://datasciencefree.com/numpy.pdf

资源 3:https://www.datacamp.com /community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE

资源 4:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master /numpy /numpy.ipynb

4. Pandas

资源1:http://datasciencefree.com/pandas.pdf

资源 2:https://www.datacamp.com /community/blog/python-pandas-cheat-sheet#gs.S4P4T=U

资源 3:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master /pandas/pandas.ipynb

5. Matplotlib

资源 1:https://www.datacamp.com/ community/blog/python-matplotlib-cheat-sheet

资源 2:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master /matplotlib/matplotlib.ipynb

6. Scikit Learn

资源 1:https://www.datacamp.com /community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk

资源 2:http://peekaboo-vision.blogspot.de/2013 /01/machine-learning-cheat-sheet-for-scikit.html

资源 3:https://github.com/rcompton /ml_cheat_sheet/blob/master/supervised_learning.ipynb

7. Tensorflow

https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks /1_Introduction/basic_operations.ipynb

8. Pytorch

https://github.com/bfortuner/pytorch-cheatsheet

数学

如果你希望了解机器学习,那你就需要彻底地理解统计学(特别是概率)、线性代数和一些微积分。我在本科时辅修了数学,但是我确实需要复习一下了。这些小抄提供了机器学习算法背后你所需要了解的大部分数学知识。

1. 概率

http://www.wzchen.com/s/probability_cheatsheet.pdf

2. 线性代数

四页内解释线性代数

https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf

3. 统计学

http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf

4. 微积分

https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180506A1123G00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券