更多精彩推荐,请关注公众号:tjxj666
逻辑回归(Logistic Regression)
概述
假设现在有一些数据点,用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归。
利用逻辑回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。
算法流程
收集数据:采用任意方法收集数据
准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳
分析数据:采用任意方法对数据进行分析
训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数
测试算法:一旦训练步骤完成,分类将会很快
使用算法:首先,需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,就可以在输出的类别上做一些其他分析工作
基于逻辑回归和Sigmoid函数的分类
逻辑回归
优点:计算代价不高,易于理解和实现
缺点:容易欠拟合,分类精度可能不高
适用数据类型:数值型和标称型数据
我们想要的函数应该是,能接受所有的输入然后预测出类别。例如,对于而分类问题,该函数应该返回0或1。具有这种性质的函数称为海维塞德阶跃函数(Heaviside step function),或直接称为单位阶跃函数。海维塞德阶跃函数的问题在于:该函数在跳跃点上从0瞬间跳跃到1,这个瞬间跳跃过程有时很难处理。
Sigmoid函数是一个S型曲线,其函数形式为:
当输入z等于0时,Sigmoid函数值为0.5。随着z的增大,对应的函数值趋近于1;随着z的减小,对应的函数值趋近于0。
基于最优化方法的最佳回归系数确定
训练算法:适用梯度上升找到最佳参数
梯度上升法基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。
梯度上升法的伪代码:
分析数据:画出决策边界
训练算法:随机梯度上升
梯度上升算法每次更新归回系数时都需要遍历整个数据集,数据量较小时尚可,但如果有数十亿样本和上千万特征,那么该方法的计算复杂度就太高了。一种改进方法是以此仅用一个样本点来更新回归系数,该方法称为随机梯度上升算法。由于可以在新样本到来时对分类器进行增量式更新,因而随机梯度上升算法是一个在线学习算法。与“在线学习”相对应,一次处理所有数据被称作是“批处理”。
随机梯度算法伪代码:
测试随机梯度上升算法
从结果上来看,拟合出来的直线效果还不错,但不像前面那么完美。这里的分类器错分了三分之一的样本。
但是前面的结果时迭代了500次才得到的。
示例:从疝气病症预测病马的死亡率
使用逻辑回归来预测患有疝气病的马的存活问题。
如需数据集进行实验,请留言。
收集数据:给定数据文件。
准备数据:用python解析文本文件并填充缺失值。
分析数据:可视化并观察数据。
训练算法:使用优化算法,找到最佳的系数。
测试算法:为了量化回归的效果,需要观察错误率。根据错误率决定是否回退到训练阶段,通过改变迭代的次数和步长等参数来得到更好的回归系数。
使用算法:实现一个简单的命令行程序来收集马的症状
准备数据:处理缺失值
处理缺失值可选的做法:
使用可用特征的均值来填补缺失值
使用特殊值来填补缺失值,如-1
忽略有缺省值的样本
使用相似样本的均值填补缺失值
使用另外的机器学习算法预测缺失值
这里选择实数0来替换所有缺失值,因为使用NumPy数据类型不允许包含缺失值,而0恰好能适用于逻辑回归。回归系数的更新公式如下:
weights=weights+alpha∗error∗dataMatrix[randindex]weights=weights+alpha∗error∗dataMatrix[randindex]
如果dataMatrix的某特征对应值为0,那么该特征的系数不做更新,即:
weights=weightsweights=weights
另外,由于sigmoid(0) = 0.5,即它对结果的预测不具有任何倾向性,因此选择实数0作为缺失值也不会对误差项造成影响。
测试算法:用逻辑回归进行分类
函数测试
10次迭代后,平均错误率为35%。这个结果并不差,因为有30%的缺失值。
如果调整colicTest()中的迭代次数和stocGradAscent1()中的步长,平均错误率还可以下降。
小结
逻辑回归的目的是寻找一个非线性函数Signmoid的最佳拟合参数,求解过程可以由最优化算法来完成。在最优化算法中,最常用的是梯度上升算法,而梯度上升算法又可以简化为随机梯度上升算法。
随机梯度上升算法与梯度上升算法的效果相当,但占用更少的计算机资源。此外,随机梯度上升算法是一个在线算法,它可以在新数据到来时完成参数更新,而不需要重新读取整个数据集来进行批处理运算。
·END·
统计学家
统计学·机器学习·人工智能
微信号:tjxj666
领取专属 10元无门槛券
私享最新 技术干货