首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

亲生的孩子却不敢认

多年以来,人工智能领域被那些旨在复制人类意识功能的宏大计划统治着。我们梦想着拥有一台机器,能够理解我们、识别我们,帮助我们做出决定。近几年来,我们已经实现了这些目标,然而实现的方式,是先行者不曾想象的。我们已经创造出了意识,只不过它们与我们的意识相去甚远。它们的推理过程,对人类来说深不可测——这一进展所预示的前景,正在引起人们的关注。既然我们正在愈加依赖这种新型智能,我们或许需要改变自己的思维方式去适应它。

无法完成的清单

1958年,在英国特丁顿召开的思想过程机械化会议,研究者列出了一系列目标,是我们向具备类人智能的机器挺进时必需要达成的。参与那次会议的,不仅有计算机科学家,还有物理学家、生理学家和心理学家。按照我们的样子建造思考机器的前景,令这些人全都激动万分。他们一致认为,智能的特征应该包括对理解话语、翻译语言、识别图像,以及模仿人类决策的能力。

然而时间在流逝,那张清单却丝毫没有变短。很多研究者试图以逻辑公理为根基,使用程序化的规则来模拟人类思考。他们以为,只要创建足够多的规则就能成功。但事实证明,这太难了。几十年过去了,人工智能研究成果寥寥,资金告罄。

意料之外的突破

那么,究竟是什么发生了改变呢?“我们并没有找到智能的解决方案,” 英国布里斯托尔大学的尼洛·克里斯蒂亚尼尼(Nello Cristianini)说,“我们算是放弃了。”然而,这便是突破。“一旦我们放弃制造精神和心理特性的尝试,成功之道便开始出现在眼前了。”

说白了,他们放弃了预编程的规则,而是投向了机器学习的怀抱。利用这种技术,计算机教会自己从数据中建立模式。有了足够大的信息量,你就能让机器学会做看上去有智能的事情,别管是理解话语、翻译语言,还是识别人脸。

英国剑桥微软研究院的克里斯·毕肖普(Christopher Bishop)打了个比方:“你堆积足够多的砖块,然后退上几步,就能看到一座房子。”

这种方法的原理大概是这样的。很多最成功的机器学习系统,依据的都是贝叶斯统计,这种数学框架能让我们测算可能性。根据给定情境以及先前在类似情境中观察到的关联数据,贝叶斯统计能够给出出现某个结果的可能性数值。

猫吃什么

比如,我们想让人工智能回答与一个简单问题:猫吃什么。基于规则的方法要从零开始,采取有逻辑的步骤,建立一个关于猫及其饮食习惯的数据库。采用机器学习技术,你只需要不加选择地输入数据——互联网搜索、社交网络、食谱书籍等等。通过计算特定词汇出现的频率,以及概念之间如何彼此关联,系统便建立了一个统计模型,能够估计猫喜欢某些食物的可能性。

自从我们转变方式,从把规则教给机器,转变为让它们在大数据中学习,人工智能便取得了长足的进步。

当然,机器学习所依赖的算法已经出现多年。新鲜之处在于,现在我们有了足够的数据,让这种技术大显神威。

是什么OR为什么

在人工智能发展早期,“可解释性”被赋予了很高的价值。当机器做出选择时,人类能够追查到原因。然而,如今,那些由数据驱动的人工意识所做的推理,是对巨量数据点进行高度复杂的统计分析。换句话说,为了得到“是什么”,我们放弃了“为什么”。

就算一位高超的技师能够搞懂其中的数学过程,可能也没有什么意义。毕肖普说,那并不会揭示为什么系统会做出某个决定,因为这个决定并不是经由人类能够解读的一系列规则而得出的。他认为,为了得到有用的系统,这是个可以接受的取舍。早期的人工意识或许是透明的,但它们都失败了。“你可以得到一个解释,但那是对错误预测的解释。”一些人对这种转变提出了批评,但毕肖普和其他一些人主张,是时候放弃对人类解释的期待了。

当人们梦想着以自己为蓝本建造人工智能时,他们向往的或许是,有朝一日能够以平等的身份,与这些会思考的机器相遇。然而,我们最终得到的人工智能却是异类,是一种我们之前不曾遭遇过的智能形式。

您的认可和分享是我们前进的动力

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180711G133YW00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券